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Abstract

In this paper we address local bifurcation properties of a family of networked dy-

namical systems, specifically those defined by a potential-driven flow on a (directed)

graph. These network flows include linear consensus dynamics or Kuramoto models

of coupled nonlinear oscillators as particular cases. As it is well-known for consensus

systems, these networks exhibit a somehow unconventional dynamical feature, namely,

the existence of a line of equilibria, following from a well-known property of the graph

Laplacian matrix in connected networks with positive weights. Negative weights, which

arise in different contexts (e.g. in consensus models in signed graphs or in Kuramoto

models with antagonistic actors), may on the one hand lead to higher-dimensional

manifolds of equilibria and, on the other, be responsible for bifurcation phenomena.

In this direction, we prove a saddle-node bifurcation theorem for a broad family of

potential-driven flows, in networks with one or more negative weights. The goal is to

state the conditions in structural terms, that is, in terms of the expressions defining the

flowrates and the graph-theoretic properties of the network. Not only the eigenvalue

requirements but also the nonlinear transversality assumptions supporting the bifurca-

tion motivate an analysis of independent interest concerning the rank degeneracies of

nodal matrices arising in the linearized dynamics; this analysis is performed in terms of

the contraction-deletion structure of spanning trees and uses several results from ma-

trix analysis. Different examples illustrate the results; some linear problems (including

signed graphs) are aimed at illustrating the analysis of nodal matrices, whereas in

a nonlinear framework we apply the characterization of saddle-node bifurcations to

networks with a sinusoidal (Kuramoto-like) flow.
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1 Introduction

This paper addresses certain qualitative properties of potential-driven flows defined on net-

works. From different perspectives, this kind of problems have been addressed in many

application fields, which include coupled oscillators, operations research, circuit theory, elec-

tronic engineering, water and gas networks, power systems, traffic networks or multiagent

systems, to name but a few: cf. [2, 3, 9, 10, 11, 16, 21, 26, 27, 28, 32, 34, 37, 42, 48]. Our point

of view is deliberately a general one, as we aim to explore in structural terms certain proper-

ties of dynamical systems defined on networks, without focusing on specific models coming

from applications; in our analysis we examine systematically the way in which the dynamical

processes interact with the graph-theoretic underlying structure, looking for general results

except for the fact that the dynamics is assumed to be defined by a potential-driven flow.

Very broadly speaking, this approach has been systematically exploited in nonlinear circuit

theory in the last decade [29, 39]: our present goal is to extend somehow this perspective to

the study of certain aspects of complex network dynamics, which define a very active topic

research (see the works cited above and references therein). From this point of view the

scope of potential applications of our results is rather wide.

Specifically, we are interested in the fact that potential-driven flows systematically yield

non-isolated equilibrium points. This is well-known for instance in the context of so-called

consensus protocols [34, 37, 44], where lines of equilibria arise pervasively. These consensus

protocols can be easily reformulated as a potential-driven flow in a network of cooperating

agents: find details in Section 2. The one-dimensional nature of the equilibrium set can be

understood as a consequence of the structure of the (positively) weighted Laplacian matrices

arising in these models; here the positive weights reflect the fact that agents cooperate in the

sense that they tend to reach a common position; alternatively, this model can be seen as

a redistribution system in which a flow evolves in a way such that all agents asymptotically

get the same quantity of a given commodity or resource.

Our goal is to examine what happens, from the point of view of local dynamics, when

this positiveness (or cooperation) assumption fails and weights can take on negative values.

Negatively weighted networks have received some recent attention as a model of systems with

antagonistic actors (cf. [3, 23, 33, 45]). Specifically, the presence of negative weights should

be responsible for stability changes and, in a nonlinear setting, bifurcation theory is the

appropriate context to frame local qualitative changes near equilibria. In this direction, our

main result will be a saddle-node bifurcation theorem for potential-driven flows in networks,

holding in contexts with either one or several negative weights. The non-isolated nature of

equilibria will yield a splitting of lines of equilibria displaying different stability properties.

These results will be presented in Section 4. However, the eigenvalue requirements as well

as the transversality conditions supporting the saddle-node bifurcation theorem for general

ODEs [20, 36, 41] pose certain problems of independent interest regarding the (negatively

weighted) nodal matrices which arise in the linearized dynamics; for this reason, we tackle

in advance the structure of the equilibrium set and several related properties of independent

interest involving nodal matrices in Section 3, using determinantal expansions as in the
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weighted matrix-tree theorem; these results, whose origins go back to the pioneering work of

Kirchhoff and Maxwell, will be placed in the appropriate context by examining additionally

several related recent works [6, 9, 10, 13, 46, 47].

Potential-driven flow networks include in particular a wide family of Kuramoto models

(cf. [2, 16, 23, 26, 28, 42, 45]) and we will show, specifically, that our saddle-node bifurcation

characterization applies to certain networks with a sinusoidal (Kuramoto-like) flow, extend-

ing some results from [16]. This, together with some additional examples concerning flows

in signed graphs, can be found in Section 5. Finally, Section 6 compiles concluding remarks

and lines for future research.

2 Potential-driven flows in networks

Networks will be assumed in this paper to be defined by a directed graph (or digraph)

without self-loops. For the sake of simplicity we assume throughout the document that the

digraph is connected and that it has at least one edge. Denoting by n and m the number of

nodes and edges, respectively, define the incidence matrix A = (aij) ∈ R
n×m entrywise by

aij =







1 if edge j leaves node i

−1 if edge j enters node i

0 if edge j is not incident with node i.

(1)

2.1 Flows

A flow on such a network is defined by a dynamical system of the form

δ ◦ x′ = −Au, (2)

where δ = (δ1, . . . , δn) ∈ R
n, with entries δi ∈ {0, 1}; x = (x1, . . . , xn) ∈ R

n is the state

vector, with each component modelling the state of a single node, whereas u = (u1, . . . , um) ∈
R

m is a vector of flowrates. The circle ◦ stands for the Hadamard product, so that each

component within the left hand-side amounts to the product δix
′
i and therefore (2) reads

componentwise as

δix
′
i = −Aiu, i = 1, . . . , n, (3)

where Ai is the i-th row of the incidence matrix A.

To fix ideas, consider a simple connected network in which a given resource (e.g. electrical

charge, water, gas, a given commodity, etc.) flows among a set of n agents located at the

network nodes; here “simple” means that the network has neither parallel edges nor self-

loops. Let us first assume that all agents collect this commodity (this corresponds to choosing

δi = 1 for i = 1, . . . , n), and denote the amount of the collected resource at node i by xi.

The flowrate (or flow) of this resource at a given edge j, connecting nodes i and k, is uj.

Note that every edge is endowed with a reference direction; if the j-th edge is directed say

from i to k, uj > 0 (resp. uj < 0) means that the resource flows from i to k (resp. from k
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to i). Equation (3) just expresses, with δi = 1, that the increase x′
i of the stored resource at

node i equals the net flow entering the node, that is, −Aiu with the sign convention above.

Cases in which some δi’s do vanish model situations in which some nodes do not accu-

mulate the aforementioned resource, yielding problems with so-called partial storage. Both

types of nodes (those with δi = 0 and with δi = 1) may well be present in flow networks and

note that (3) describes the continuity equations for both. If all δi’s do vanish we arrive at a

widely studied framework stemming from the work of Ford and Fulkerson (cf. [5, 15]). From

another perspective, the vanishing of all δi’s happens naturally in electrical circuit theory,

u standing in this case for the electrical current and (2) (which amounts in this context to

Au = 0) expressing Kirchhoff’s current law.

For the sake of simplicity, we will focus on cases with δi = 1 for i = 1, . . . , n. In this

setting, (2) is simply

x′ = −Au. (4)

In this generality, flow networks arise in many different application fields: let us mention for

example distribution networks [11, 14, 27, 43], supply chains [17], traffic networks [10, 21],

power systems [9, 18], inventory systems [4, 8], etc. We do not at all attempt to be exhaustive,

and references are only a small sample of a huge amount of literature. Worth mentioning are

also the works [10, 27], aimed at providing very general dynamic models for network flows.

Depending on the application field, other (related) models can be found in the literature.

For instance, the form of (4) above assumes that the so-called node divergence di = −Aiu

(see e.g. [10]) equals the change in the stored resource at node i; in other cases, e.g. in the

presence of external supplies or demands, the right-hand side of (4) takes the form −Au+ s

for a (possibly time-dependent) vector s = (s1, . . . , sn) of supply/demands (cf. for instance

[8, 10, 14, 43]). When supplies and demands are balanced we have
∑n

i=1 si = 0 and, using

basic properties of the incidence matrix, this makes it possible to recast the vector field

above as −A(u+ s̃) for a certain vector s̃, driving the system to the form (4). We refer the

reader to the aforementioned papers for additional details regarding these and other flow

network models.

2.2 Potential-driven flows

System (4) is underdetermined. The way in which the flowrates u interact with the node

state variables x may be defined from different perspectives; for instance, in a game-theoretic

setting the agents’ strategies would define the flows, or in the framework of control theory u

might be designed as to achieve a given goal. Here we will assume that the flowrates u are

explicitly defined in terms of the node states x by a relation of the form

u = f(ATx), (5)

where f : Rm → R
m is a possibly nonlinear, differentiable map which is assumed to have a

diagonal structure, that is

f = f1 × . . .× fm
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with fj : R → R depending only on (AT)jx; here (A
T)j is the j-th row of AT. This means that

the flowrate in edge j (connecting nodes i and k) depends only on the difference xi−xk. We

emphasize that, implicitly, there are two modelling assumptions here; first, the flowrate uj

on the j-th edge depends only on an edge-supported variable ζj and, second, this variable is

defined from the states at the incident nodes simply as the difference xi − xk. The variables

x can be then thought of as a potential and hence the “potential-driven” label for these

flows: electric potential or pressure are examples in electrical circuits and water networks,

respectively (see [10, 27, 32]). In the electrical circuit framework, ζj = xi − xk is called the

voltage drop or simple the voltage at the j-th edge. Note that, by construction, the above

defined variables ζ verify Bζ = 0 for any cycle matrix B (see e.g. [5, 39]), an identity which

in the electrical circuit context is Kirchhoff’s voltage law and defines the dual relation of the

equation Au = 0 mentioned above; in this direction, further duality relations are discussed

in an abstract setting in [10].

The assumptions above transform (4) into

x′ = −Af(ATx), (6)

which defines a general formulation for potential-driven flows in networks. The focus of this

paper is on systems of the form (6) (and its parameterized version (27)), with the restrictions

on f just mentioned.

2.2.1 Linear consensus protocols

A simple example is obtained if u is designed in order to get a fair (equal) distribution

of the aforementioned commodity among all agents. This can be achieved by setting the

(potential-driven) form for the flowrates u = ATx, which is just a redistribution law in which

the flow from i to k equals xi − xk. In this setting (6) is just

x′ = −Lx (7)

where L = AAT is the graph Laplacian matrix. The dynamics of (7) has been analyzed in

the context of so-called consensus protocols [34, 37, 44], and the state variables x may be

checked to converge to a common value which is the arithmetic mean of the initial values

x1(0), . . . , xn(0). This means that the resource is indeed redistributed among all the agents

in a way such that all of them asymptotically store the same quantity.

Note that the right-hand side of (7), defined by the Laplacian matrix AAT, can be un-

derstood as a particular instance of the product AWAT with W = Im. Actually, the essential

features of (7) are preserved if the product AAT is replaced by the weighted Laplacian matrix

AWAT with a positive, diagonal W ; in other words, dynamics of the consensus system (7)

remains essentially the same if the network is assumed to be positively weighted (a note

on terminology: we use interchangeably the terms “weighted Laplacian matrix” and “nodal

matrix” for a product of the form AWAT. In the circuit theory framework it is common to

focus on connected problems and remove a row from A to define a reduced incidence matrix
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Ar, and we will use the term “reduced nodal matrix” for ArWAT

r ; note also that in the

literature the term “nodal matrix” often refers to the latter).

Things will change in the presence of so-called antagonistic actors or contrarians, dis-

playing a negative weight in their connection (see [6, 13, 46, 47] or [23, 45] in the context

of Kuramoto models). Although this will be discussed in Section 3, it is worth remarking

here another closely related research direction on linear consensus systems which has been

recently developed [3, 33]. Given a set of agents including some antagonistic pairs, one may

define the coefficient matrix of (7) in a different manner in order to retain (in a certain sense)

the convergence properties of the positively weighted case; this is supported on alternative

definitions of the Laplacian matrix for negatively weighted networks and signed graphs (cf.

[25] and references therein). This approach is followed in [3], where the author sets the coef-

ficient matrix as L̃ = −C +D, C being (as in the standard weighted Laplacian matrix) the

weighted adjacency matrix, but now the entries of the diagonal matrixD being defined by the

sum of the absolute values of the weights (whereas in the standard definition of the weighted

Laplacian matrix, the weights retain their signs in the sums which define D). In signed

graphs, this amounts to combining the weighted or signed adjacency matrix C with the (say,

“unsigned”) degree matrix D, contrary to the standard weighted Laplacian matrix where D

turns out (always in the signed framework) to be equivalent to the so-called signed degree

matrix (cf. [25]). This alternative notion yields the standard weighted Laplacian matrix in

positively weighted networks, but allows for a nice extension of the convergence properties

mentioned above to cases with negative weights; namely, the network is shown in [3] to reach

a bipartite consensus, meaning that all nodes asymptotically reach the same absolute value,

if and only if the graph is structurally balanced, that is, iff it admits a splitting of the nodes

into two groups with all positive (resp. negative) connections occurring inside each group

(resp. between both groups); moreover, the sign of the consensus value is the same within

each group, and differs from one group to another. Find some very recent extensions of these

results in [33]. It is important to note that, in contrast, the results addressed here for linear

problems are always directed to the standard weighted Laplacian matrix.

2.2.2 Nonlinear problems, Kuramoto models

An important family of networked nonlinear dynamical systems (namely, Kuramoto-like

models for coupled oscillators) defines another instance of a potential-driven flow, as detailed

in what follows. It is worth emphasizing that these systems have driven much research in

this area. In its original formulation [28], the Kuramoto model reads as

θ′i = ωi −
k

n

n
∑

j=1

sin(θi − θj), i = 1, . . . , n, (8)

where θi lies on S
1, ωi are the natural oscillator frequencies, and k is the coupling strength.

Find detailed introductions to this and other related models in [2, 16, 26, 42]. In (8) one

assumes that the underlying topology is that of a complete graph, and that the coupling
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strength is the same in all edges. By relaxing these assumptions, one gets (cf. [26])

θ′i = ωi − AiWs(ATθ), i = 1, . . . , n, (9)

where, as in (3), Ai is the i-th row of the incidence matrix; W is a diagonal matrix whose

j-th diagonal entry is the coupling strength in the j-th edge, and the map s just denotes the

product sin× (m). . . × sin. Note in particular that the coupling strengths (or weights) may in

some cases take negative values, as discussed in [23, 45]. By means of the linear coordinate

change

xi = θi − ωst, ωs =

∑n

i=1 ωi

n
, i = 1, . . . , n, (10)

the model (9) takes the form

x′
i = ωi − AiWs(ATx), i = 1, . . . , n, (11)

with ωi = ωi − ωs. Note that ωs =

∑n

i=1 ωi

n
is the synchronization frequency (see e.g. [16])

and that, by construction,
∑n

i=1 ωi = 0. Because of the form of the incidence matrix A, the

latter can be checked to imply that the vector ω = (ω1, . . . , ωn) belongs to imA and makes

it possible to recast (11) as

x′ = −A(v +Ws(ATx)), (12)

for a certain vector v which is uniquely defined in imAT. System (12) has the form depicted

in (6) and this means that Kuramoto models in arbitrary topologies and with arbitrary

coupling coefficients can be written as a potential-driven network flow in the coordinate

system defined by (10). Therefore, later results apply in particular to Kuramoto-like models;

in this direction, with illustrative purposes we will show how the saddle-node bifurcation

characterization obtained in Section 4 applies to flow networks with a sinusoidal flowrate.

3 On the equilibrium set of potential-driven flow networks

The consensus dynamical system (7) is well-known to display a somewhat unusual property

in dynamical systems theory, namely the existence of a line of equilibria. The key for the

existence of non-isolated equilibrium points is the fact that (7) describes the dynamics of a

potential-driven flow. Moreover, as detailed later, equilibria define a one-dimensional mani-

fold (a line) because of the implicit assumption that the network is positively weighted (and

connected). Without this positivity assumption, the structure of the equilibrium set may be

more intricate, as discussed in this section. Specifically, by means of the determinantal ex-

pansions arising in the weighted matrix-tree theorem [5, 12] we characterize singular reduced

nodal matrices but also cases in which their degeneracy (rank deficiency) is minimal, as a

first step of independent interest towards the bifurcation analysis carried out in Section 4.

In subsection 5.1 we will illustrate these results using several networks supported on signed

graphs, originally introduced by Harary [22].
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3.1 Equilibria and the subimmersion theorem

For notational simplicity we denote by g(x) the right-hand side of (6), that is,

g(x) = −Af(ATx). (13)

It is easy to check that equilibria of (6) may never be isolated; indeed, provided that g(x)

vanishes for a given x∗, then x = x∗+v also annihilates g(x) = −Af(ATx), for any v ∈ kerAT.

Note that this kernel is never trivial, being one-dimensional in a connected digraph (since in

this case rk A = n−1, cf. e.g. [5, 12]). In general, we do not require f to be linear; of course,

when f is a linear map the equilibrium set is a linear manifold. The problem we address in

this section is the characterization of the cases in which the equilibrium set is locally a line,

as it happens for (7), as well as some problems with a minimal degeneracy, namely, those in

which the corank of the weighted Laplacian matrix does not exceed two; this will be used in

the saddle-node bifurcation analysis of Section 4.

We will make use of the subimmersion theorem, which states that if Ω is an open subset

of Rn, and g is a smooth mapping Ω → R
p such that the Jacobian matrix g′(x) has constant

rank r ≤ p on Ω, then for every y in g(Ω) the set g−1(y) is a submanifold of Ω with

dimension n − r (see e.g. Th. 3.5.17 in [1]). The result also holds if g has constant rank r

on a neighborhood of g−1(y). We will use this result with g given in (13), y = 0, p = n and

r = n− 1 to characterize the problems in which the equilibrium set is a line around a given

equilibrium point x∗ (more precisely, to rule out other nearby equilibria apart from those

spanned by kerAT). The Jacobian matrix g′(x) reads as

g′(x) = −Af ′(ATx)AT (14)

and, since rk A = n − 1, it follows that g′(x) is persistently rank deficient. Therefore, for

the equilibrium set of (6) to be one-dimensional (at least locally around x∗), it is enough to

derive conditions guaranteeing rk g′(x∗) = n−1, since this maximum rank would necessarily

be attained also on a neighborhood of x∗. In order to examine the rank of g′(x∗), let us

denote the derivatives of the components of f at x∗ as

Wj =
dfj
dζj

((AT)jx
∗), j = 1, . . . ,m, (15)

and let W stand for the diagonal matrix with entry Wj in the j-th diagonal position: be

aware of the assumption that fj depends only on ζj = (AT)jx. With this notation we have

g′(x∗) = −AWAT. (16)

This expression shows that the Jacobian matrix g′(x∗) has the structure of a weighted Lapla-

cian matrix, with weights being defined by the derivatives dfj/dζj at A
Tx∗.

3.2 Positive weights

If all weights Wj (that is, all derivatives dfj/dζj) are positive at ATx∗, then it is a simple

matter to check that

kerAWAT = kerAT. (17)
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Indeed, just note that AWATv = 0 implies vTAWATv = 0 and therefore ATv = 0 because

of the positiveness of the diagonal matrix W . The relation depicted in (17) implies that

rk g′(x∗) = rk AWAT = rk AT = n − 1 and, because of the subimmersion theorem, it

follows that equilibria actually define a line near x∗. This also underlies the existence of an

equilibrium line in linear consensus systems such as (7).

3.3 Negative weights: non-degenerate cases

If W in (16) includes negative entries, the remarks just stated do not apply, and we may

actually find potential-driven flow dynamics on connected graphs displaying higher (≥ 2)

dimensional manifolds of equilibria. This may of course be the case even in linear problems:

examples in a linear context, involving signed graphs, can be found in subsection 5.1 below.

A different approach is needed to analyze the structure of the equilibrium set in digraphs

with possibly negative weights. In this setting, the main result is the weighted matrix-tree

theorem (see e.g. [5]), according to which the non-singularity of the reduced nodal matrix

arising below can be characterized in terms of a determinantal expansion defined by the

spanning trees of the (assumed connected) graph. This approach can be traced back to the

work of J. C. Maxwell and, in the dual setting, to that of Kirchhoff (cf. [12, 38]). In the

network context this approach has been used in [6] (see also [13, 46, 47]). Together with the

subimmersion theorem, this yields a simple characterization of the cases in which equilibria

locally define a line; this is stated in Proposition 1 below, where we make use of the notion

of the weight of a spanning tree; this is simply the product of the weights of the tree edges.

Proposition 1. Assume that the dynamical system (6) is defined on a connected digraph.

The Jacobian matrix g′(x∗) in (16) has corank one if and only if the sum of the spanning

tree weights does not vanish, where the edge weights are given by (15). If this sum is not

null, then the set of equilibria is a line locally around the equilibrium point x∗.

Proof. The matrix AWAT in the right-hand side of (16) is a weighted Laplacian matrix,

which is rank deficient since rk A = n− 1. According to the weighted matrix-tree theorem,

we know that this matrix actually meets the maximal rank n− 1 if and only if

det(ArWAT

r ) 6= 0, (18)

for an arbitrary choice of a reduced incidence matrix Ar, defined by any set of n− 1 rows of

A (without loss of generality, in what follows we are allowed to work e.g. with the reduced

incidence matrix Ar defined by the first n− 1 rows of A). Moreover, the determinant in (18)

is known to admit a Cauchy-Binet determinantal expansion [24] of the form

det(ArWAT

r ) =
∑

α∈T

∏

j∈α

Wj, (19)

where the index sets α ⊆ {1, . . . ,m} are used to specify sets of edges, and T stands for the

family of index sets which specify spanning trees. The key property here is that incidence

matrices are totally unimodular (cf. e.g. [7, Corollary 2.3.4]) and therefore detAr = ±1 when
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Ar stands for the reduced incidence matrix of a spanning tree. The weighted matrix-tree

theorem then guarantees that g′(x∗) has corank one if and only if the sum of the spanning

tree weights does not vanish.

Provided that the non-vanishing condition (18) holds, the identity rk g′(x∗) = n − 1

yields, as a direct consequence of the subimmersion theorem in the terms stated above, a

local one-dimensional structure for the equilibrium set near x∗. ✷

Proposition 1 provides a graph-theoretic characterization, in terms of the digraph tree struc-

ture, of the problems which systematically lead to lines of equilibria in potential-driven flow

networks with (possibly) some negative weights. In this direction, it is worth remarking that

in the network dynamics literature [46, 47] (see also [13], where a different proof of the main

result in [46] is given), the vanishing requirement in the sum of tree weights (19) is implicitly

reported to be responsible for the increase in the multiplicity of the null eigenvalue and,

accordingly, for the loss of semidefiniteness of the Laplacian matrix beyond the so-called

effective resistance obtained after recasting the network in electrical circuit terms, weights

playing the role of conductances; note in this regard that Maxwell’s determinantal expan-

sion implicitly supports the effective resistance notion used in the aforementioned papers

(see also the remarks preceding Lemma 1). In our setting, the failing of the aforementioned

non-vanishing requirement in the sum of tree weights, together with the appropriate transver-

sality assumptions, will be responsible for bifurcation phenomena in nonlinear problems, as

detailed in Section 4.

Certainly, if all weights are positive then the sum arising in Proposition 1 is positive and

therefore non-null, because all tree weights are positive. This is of course consistent with

the discussion of subsection 3.2 regarding the one-dimensional nature of the equilibrium set

in positively weighted networks, for which there is no need to use these tree-based tools.

3.4 Negative weights: minimal degeneracies

Degenerate problems (defined by the singularity of the reduced nodal matrix ArWAT

r or,

equivalently, by the vanishing of the determinantal expansion (19)) may well arise in the

presence of negative weights. In this context it is important to characterize minimal degen-

eracies, that is, minimal rank drops in the reduced nodal matrix; this will be a key element

in the saddle-node bifurcation analysis of Section 4, but also has an impact in the structure

of the equilibrium set of (linear or nonlinear) potential-driven flow networks. Some problems

with minimal degeneracies are characterized below, again in terms of the structure of the

graph spanning trees. As usual, if M is an n×m matrix, corkM stands for n− rkM .

Proposition 2. Assume that the reduced nodal matrix ArWAT

r of a weighted connected di-

graph is singular. Then cork(ArWAT

r ) = 1 if there is an edge e for which at least one of the

following conditions hold.

(a) The sum of products of all tree weights but We, extended over the set of spanning trees

which include e, does not vanish.

(b) The sum of products of all tree weights, extended over the set of spanning trees which
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do not include e, does not vanish.

(c) All weights but We do not vanish and have the same sign.

Proof. The three statements are essentially a consequence of Jacobi’s identity, which ex-

presses the derivative of the determinant of a (smoothly) parameter-dependent matrix as

d

dα
(detM(α)) = tr

(

(AdjM(α))
d

dα
M(α)

)

,

see e.g. [19, 31]. Provided that M(α) is a singular matrix at a given α, an elementary

property of the adjoint matrix (namely, the transpose of the matrix of cofactors) says that

AdjM(α) 6= 0 if and only if corkM(α) = 1. It then follows that

detM(α) = 0,
d

dα
(detM(α)) 6= 0 ⇒ corkM(α) = 1. (20)

Below we apply this result to M = ArWAT

r , with We playing the role of the parameter α.

To do so, in the determinantal expansion (19) we group together all the terms which

involve We on the one hand, and those which do not on the other. This yields

det(ArWAT

r ) = K1(W̃ )We +K0(W̃ ), (21)

where W̃ stands for the diagonal matrix defined by all weights except We. Note that, by

construction, K1(W̃ ) is the sum of products of tree weights, exception made of We, extended

over the set of spanning trees which include e, whereas K0(W̃ ) is, correspondingly, the sum

of products of tree weights extended over the set of spanning trees not including e. Explicit

expressions for K1(W̃ ) and K0(W̃ ) will be given later (cf. Remark 2).

Item (a) then follows from (20), since (21) obviously yields ∂ det(ArWAT

r )/∂We = K1(W̃ ),

and the non-vanishing assumption in item (a) (i.e. K1(W̃ ) 6= 0) implies the minimal rank

drop on ArWAT

r . In turn, the requirement in item (b) (which can be written as K0(W̃ ) 6= 0)

actually implies the one in (a), since the singularity of ArWAT

r means det(ArWAT

r ) = 0,

and (21) then shows that K0(W̃ ) 6= 0 necessarily implies K1(W̃ ) 6= 0 (besides We 6= 0, a

condition not used at this point). Finally, under the requirement depicted in (c), K1(W̃ )

cannot vanish (and hence (a) applies again) because this coefficient is constructed as the

sum of non-vanishing terms with equal signs: note that these terms are products of a fixed

number of factors, all of which have the same sign. ✷

Remark 1. Item (c), in which We may vanish or not, is of interest in particular when there

is exactly one negative weight (i.e. when We < 0 and the remaining weights are positive). In

this setting the minimal rank drop can be also derived as a consequence of the results proved

in [6], characterizing the number of positive/negative/null eigenvalues of nodal matrices in

terms of the number of connected components c+ (resp. c−) of the subgraphs defined by

all nodes and the edges with positive (resp. negative) weights. Specifically, for the reduced

nodal matrix ArWAT

r , Theorem 2.10 in [6] implies that the corank is bounded above by

n + 1 − c− − c+; in a connected graph with a single negative weight it is c− = n − 1 and
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c+ = 1, provided that the edge with a negative weight is not a bridge (should it be a bridge,

it would enter all spanning trees and hence yield a common factor in the expansion (19);

since this would be the unique negative weight, the other factor in the expansion would be

positive and this would preclude the singularity of the reduced nodal matrix). We then have

n + 1 − c− − c+ = 1 and the corank-one condition follows. Note, however, that item (c) as

stated above also applies to cases with We = 0, which may well arise as a bifurcation value

in certain situations (cf. Section 5.2).

Remark 2. It is worth providing explicit descriptions for the coefficientsK1(W̃ ) andK0(W̃ )

in (21); these expressions are not explicitly needed in the proof of Proposition 2 but will be

used later (cf. Section 4). To achieve that, let us (for ease of notation and w.l.o.g.) assume

that e is numbered as the first edge, so that We = W1, and split

Ar =
(

Âr Ãr

)

, (22)

where Âr (resp. Ãr) stands for the submatrix defined by the first column (resp. the last m−1

columns) of Ar. Hence Âr describes the incidence of edge e. We may then write

ArWAT

r = W1ÂrÂ
T

r + ÃrW̃ ÃT

r (23)

(recall that W1 is a scalar). Remark that the first matrix in the right-hand side is a rank-one

perturbation of the second one, and let us then apply the identity

det(uvT +M) = vTAdjMu+ detM (24)

(cf. e.g. [31]) with u = W1Âr, v
T = ÂT

r , M = ÃrW̃ ÃT

r to derive

det(ArWAT

r ) = W1Â
T

r Adj(ÃrW̃ ÃT

r )Âr + det(ÃrW̃ ÃT

r ), (25)

so that

K1(W̃ ) = ÂT

r Adj(ÃrW̃ ÃT

r )Âr (26a)

K0(W̃ ) = det(ÃrW̃ ÃT

r ). (26b)

These descriptions provide a way to obtain the values K1 and K0 without the need to

compute the whole set of spanning trees and their weights. This will be useful for instance

in the computation of the bifurcation values arising in Theorems 1 and 2.

Additionally, these expressions reflect well the contraction-deletion recursive structure

of spanning trees. Specifically, the identity K0(W̃ ) = det(ÃrW̃ ÃT

r ) expresses the fact that

the set of spanning trees which do not include the edge e in the original graph (defining

K0(W̃ )) is exactly the set of spanning trees of the “deleted” graph obtained after removing

e, provided that this edge is not a bridge (so that this deleted graph is connected). The

reduced nodal matrix of this deleted graph is ÃrW̃ ÃT

r (this is easily seen once we note

that Ãr is the incidence matrix of the graph obtained after removing e), consistently with

the expression det(ÃrW̃ ÃT

r ) in the right-hand side of the identity above. This idea will be

exploited in Theorem 2.
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4 Saddle-node bifurcations in networks with negative weights

We now drive our attention to a parameterized version of (6), that is, to dynamical systems

of the form

x′ = −Af(ATx, µ), (27)

with µ ∈ R and f essentially satisfying the restrictions indicated in Section 2 (details are

given later). We will focus on an equilibrium x∗ at a given parameter value µ = µ∗, in

order to examine dynamical phenomena in cases in which not all weights (arising from the

linearization of the right-hand side of (27)) are positive. Denote g(x, µ) = −Af(ATx, µ).

In this setting, local bifurcation phenomena should be expected if f has the appropriate

form. Among the bifurcations of equilibria, the saddle-node bifurcation is generic (in the

sense specified in [41]) in one-parameter systems displaying a simple zero eigenvalue. There-

fore, it is natural to check which conditions on f may result on saddle-node bifurcations in

flow network dynamics of the form (27). Needless to say, we need f to be nonlinear, and

its linearization at equilibrium to depict at least one non-positive weight, since otherwise

the stability transition along the equilibrium branch predicted by the classical saddle-node

bifurcation theorem (cf. the original paper [41] or [20, 36]) is easily ruled out.

4.1 A single negative weight

A first step in this direction is Theorem 1 below, which captures minimal conditions on

f yielding indeed a saddle-node bifurcation. Theorem 2 in subsection 4.2 will extend this

result to a broader setting (accommodating multiple negative weights). In Theorem 1, we

will work in the scenario defined by the hypotheses on the vector field f stated below, which

extend the ones considered in Section 2. Without loss of generality we assume that the edge

accommodating the nonlinear flowrate is the first one and, accordingly, we denote by Â the

first column of A, so that (AT)1 = ÂT.

(a) The flowrate f1 depends smoothly on (ÂTx, µ).

(b) The remaining components fj (j = 2, . . . ,m) are independent of the parameter µ and

depend linearly on (AT)jx, that is,

fj((A
T)jx, µ) = Wj(A

T)jx, j = 2, . . . ,m. (28)

More precisely, in (a) we assume that f1 is twice differentiable. We will denote the first

scalar argument of f1 as ζ1 (that is, f1 ≡ f1(ζ1, µ)); recall that ζ1 = ÂTx because of the

potential-driven assumption. With this notation, the first weight will be

W1(x, µ) =
∂f1
∂ζ1

(

ÂTx, µ
)

(29)

where we emphasize the fact that its value will depend on the equilibrium location. In this

subsection we assume, additionally, the following.
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(c) The weights Wj are positive for j = 2, . . . ,m.

In this setting, the vanishing of the determinantal expansion (19) is the key requirement

in the saddle-node bifurcation result stated in Theorem 1. Besides this condition, the result

follows from standard assumptions on the nonlinear component f1; notably, no requirements

on the network topology are necessary (this could be different in other settings, as subsection

4.2 or the last example in Section 5 illustrate). Consistently with the nature of potential-

driven flows, the bifurcation does not yield a splitting of a single equilibrium but of a line of

equilibria.

Theorem 1. Assume that x∗ is an equilibrium of (27) at a given parameter value µ = µ∗.

Let the hypotheses (a), (b) and (c) on the components of f stated above hold and assume,

additionally, the following.

1. The weight W1(x
∗, µ∗) =

∂f1
∂ζ1

(ÂTx∗, µ∗) satisfies the identity

∂f1
∂ζ1

(ÂTx∗, µ∗) = −
∑

α∈T0

∏

j∈α Wj
∑

β∈T1

∏

j∈β−{1} Wj

= −K0(W̃ )

K1(W̃ )
, (30)

where T0 (resp. T1) is the set of spanning trees which do not include (resp. do include)

the first edge.

2. The component f1 additionally verifies

∂f1
∂µ

(

ÂTx∗, µ∗
)

6= 0,
∂2f1
∂ζ21

(

ÂTx∗, µ∗
)

6= 0. (31)

Then (27) has a (locally) unique equilibrium line comprising x∗ at µ = µ∗. This equilibrium

line bifurcates into two as µ undergoes the value µ∗. Both bifurcating lines are normally

hyperbolic: one of them is an exponential attractor whereas the other one is unstable.

Note that the linearization of a vector field at an equilibrium which is embedded into

an equilibrium line necessarily depicts a zero eigenvalue. The line of equilibria is said to be

normally hyperbolic if the remaining eigenvalues are away from the imaginary axis [30]. If

all the remaining eigenvalues have negative real parts, then the line of equilibria attracts

exponentially nearby trajectories. This is a consequence of the S̆os̆ităı̆svili-Palmer theorem

[35, 40]. Indeed, the dynamics on the equilibrium line is trivial (i.e. it reads x′ = 0 for a scalar

variable x parameterizing the equilibrim line, which is a center manifold): according to the

aforementioned theorem, the local dynamics is then topologically equivalent to the system

x′ = 0, y′ = Hy with all the eigenvalues of H having negative real part (H is the hyperbolic

part of the linearization at equilibrium). Find details in the original papers [35, 40] or e.g.

in [20, 30, 36].

In item (30) we borrow the notation from (21) for the coefficients K1(W̃ ) and K0(W̃ )

where, as in previous sections, W̃ comprises (as a diagonal matrix) the positive weights
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W2, . . . ,Wm; now W1 stands for We in (21). The statement of Theorem 1 implicitly uses the

fact that K1(W̃ ) does not vanish, since it is a sum of positive terms. Additionally, the proof

will make use of some auxiliary results which are stated in advance.

The first one, stated in Lemma 1, is an extension of item (c) in Proposition 2 showing that

with only one non-positive weight (that is, negative or null), then not only the rank deficiency

of the reduced nodal matrix is at most one but actually only one eigenvalue may eventually

become negative. We emphasize that this result is essentially known in the literature: cf.

the work [6] referred to in the proof but also [46, 47] and [13] (the latter references focus on

the loss of definiteness of the reduced nodal matrix at the critical parameter value, but the

fact that locally beyond that value only one eigenvalue becomes negative follows naturally).

Recall that Ar is the reduced incidence matrix defined by the first n− 1 rows of A.

Lemma 1. Consider a nodal matrix ArWAT

r of a weighted connected digraph, with W =

diag(W1, . . . ,Wm). If W1 ≤ 0 and Wi > 0 for i = 2, . . . ,m, then ArWAT

r has no more than

one non-positive eigenvalue.

Proof. Note first that if W1 = 0, the identity (23) easily shows that the claim is true,

because in this case ArWAT

r = ÃrW̃ ÃT

r , and the latter is a symmetric positive semidefinite

matrix (note that W̃ = diag(W2, . . . ,Wm) is positive definite). Since the rank deficiency

of the former matrix is at most one, as shown in Proposition 2, it displays at most one

non-positive (actually null) eigenvalue.

In the case W1 < 0 the result follows immediately from [6, Th. 2.10], since according to

this result the number of positive eigenvalues is bounded below by c− − 1, where c− is the

number of connected components of the subgraph defined by all nodes and the edges with

negative weights. In a connected graph with a single negative weight we have c− = n−1 and

therefore the number of positive eigenvalues is not less than n−2. Since the total number of

eigenvalues of the reduced nodal matrix is n− 1, it follows that no more than one eigenvalue

may be negative or zero. ✷

The second auxiliary result is stated in Lemma 2 below, and will support the transversality

hypotheses in the saddle-node bifurcation theorem (cf. also Remark 4 after the proof of

Theorem 1). The last example in Section 5 will show that this result does not hold trivially,

since (32) may not be true in problems with more than one negative weight if no additional

assumptions are imposed.

Lemma 2. Consider, as above, the reduced nodal matrix ArWAT

r of a weighted connected

digraph, with W = diag(W1, . . . ,Wm), W1 ≤ 0 and Wi > 0 for i = 2, . . . ,m. If ArWAT

r is

singular, then

Âr /∈ imArWAT

r , (32)

where Âr stands for the first column of Ar.

Proof. Assume that (32) does not hold, i.e., assume Âr ∈ imArWAT

r , and take a vector

v ∈ kerArWAT

r − {0}. Since ArWAT

r is symmetric, we have kerArWAT

r =
(

imArWAT

r

)⊥
and
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therefore ÂT

r v = 0 by orthogonality. Multiplying (23) by v we then get

ÃrW̃ ÃT

r v = 0 (33)

and therefore ÃT

r v = 0 because W̃ is positive definite. Together with ÂT

r v = 0, this yields

AT

r v = 0, which is a contradiction because v 6= 0 and the columns of AT

r are linearly

independent (since Ar has maximal row rank). This completes the proof. ✷

Remark 3. For later use, it is worth emphasizing the (pretty obvious) fact that (32) is

equivalent to ÂT

r v 6= 0 for any non-vanishing vector v in the one-dimensional kernel of

ArWAT

r , since this will be helpful in order to unravel the geometrical meaning of the second

order condition involved in Theorem 1 (cf. Remark 4).

Finally, in the proof of Theorem 1 (and also in Theorem 2) we will use a reduction of the

dynamics of (27) to an invariant hyperplane, as stated below.

Lemma 3. System (27) has a family of invariant hyperplanes of the form x1+ . . .+xn = k.

By setting k = k∗, yi = xi, i = 1, . . . , n − 1 and E =
(

In−1 + 1n−11
T

n−1

)

, where 1 is the

vector of 1’s in R
n×1, the dynamics on the invariant hyperplane x1 + . . .+ xn = k∗ reads as

y′ = −Arf(A
T

r Ey + AT

nk
∗, µ). (34)

Here Ar (resp. An) stands for the first n− 1 rows (resp. the last row) of A.

Proof. This is supported on the identity 1TA = 0, which expresses the fact that the sum

of all rows of the incidence matrix A vanishes. From (27) it follows that 1Tx′ = 0, that is,
∑

x′
i = 0, so that x1 + . . . + xn is a conserved quantity, to be denoted by k. This defines a

set of invariant hyperplanes. The dynamics on any of them is easily described by means of

the linear change of coordinates given by yi = xi, i = 1, . . . , n− 1, k = x1 + . . .+ xn. After

elementary computations, in the coordinates z = (y, k) the system reads

y′ = −Arf(A
TBz, µ) (35a)

k′ = 0, (35b)

where, as defined earlier, Ar stands for the first n− 1 rows of A, and

B =

(

In−1 0

−1T

n−1 1

)

is the matrix yielding the change of coordinates x = Bz. We have made use of the identities

B−1 =

(

In−1 0

1T

n−1 1

)

, B−1A =

(

Ar

0

)

.

Note that (35b) is consistent with the fact that x1 + . . . + xn is a conserved quantity and

allows us to understand k as a parameter.
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Equation (35a) admits further simplification. Indeed, write

ATB =
(

AT

r AT

n

)

(

In−1 0

−1T

n−1 1

)

=
(

AT

r − AT

n1
T

n−1 AT

n

)

,

and note that the identity 1TA = 0 can be recast as An = −1T

n−1Ar. This yields

ATB =
(

AT

r

(

In−1 + 1n−11
T

n−1

)

AT

n

)

. (36)

In light of (36), the reduced system (35a) can be written on the invariant hyperplane

x1 + . . .+ xn = k∗ in the form depicted in (34) and the claim is proved. ✷

For later use we emphasize that E, as defined in Lemma 3, is a symmetric positive definite

matrix.

Proof of Theorem 1. The proof of Theorem 1 will make use of Proposition 2 and Lemmas

1, 2 and 3, and proceeds in three steps.

1. First we show that the reduction (34) arising in Lemma 3 has an equilibrium y∗ which

undergoes a saddle-node bifurcation at µ = µ∗. Fix k∗ = x∗
1 + . . . + x∗

n and denote by

F (y, k∗, µ) the right-hand side of (34), that is,

F (y, k∗, µ) = −Arf(A
T

r Ey + AT

nk
∗, µ).

The fact that y∗, defined componentwise by y∗i = x∗
i , i = 1, . . . , n− 1, is an equilibrium

point of (34) follows trivially from the assumption that x∗ is an equilibrium of (27). We then

need to check that the conditions supporting the saddle-node bifurcation theorem (cf. [20,

Th. 3.4.1] or [36, Th. 1 in §4.2]) do hold for (34); namely, we need to show that

(i) Fy(y, k
∗, µ∗) has a simple null eigenvalue, and no other purely imaginary eigenvalues;

(ii) Fµ(y
∗, k∗, µ∗) /∈ imFy(y

∗, k∗, µ∗); (37)

(iii) Fyy(y
∗, k∗, µ∗)vv /∈ imFy(y

∗, k∗, µ∗) (38)

do hold, being v a non-vanishing vector in kerFy(y
∗, k∗, µ∗). Subscripts are used here to

denote differentiation.

Under the conditions above, Fy(y
∗, k∗, µ∗) takes the form

Fy(y
∗, k∗, µ∗) = −Arfζ(A

T

r Ey∗ + AT

nk
∗, µ∗)AT

r E = −ArWAT

r E,

where the notationW is used to describe the diagonal matrix defined by the entriesW1(x
∗, µ∗)

andW2, . . . ,Wm given above. Except for the last factor E (which is non-singular), this matrix

has the form examined in Proposition 1, and the identity (30) indicates that the determinan-

tal expansion (19) vanishes (cf. (21)). This means that ArWAT

r and therefore Fy(y
∗, k∗, µ∗)

have indeed a null eigenvalue. Additionally, taking the (unique) symmetric positive definite

square root
√
E of the (symmetric positive definite) matrix E (cf. Theorem 7.2.6 in [24]),

by multiplying

ArWAT

r E = ArWAT

r

√
E
√
E

17



by
√
E from the left and

(√
E
)−1

from the right, the matrix ArWAT

r E is seen to be similar

to √
EArWAT

r

√
E. (39)

This matrix is congruent to ArWAT

r , which has a simple zero eigenvalue according to item

(c) of Proposition 2. Therefore, this is also the case for ArWAT

r E, as we aimed to show.

Also, the similarity to (39) precludes purely imaginary eigenvalues (other than zero).

The condition depicted in (37) (item (ii)) easily follows from Lemma 2 and the first

condition in (31), once we note that the structure of f yields

Fµ(y
∗, k∗, µ∗) = −Âr

∂f1
∂µ

(ÂTx∗, µ∗), (40)

because only f1 depends on µ.

Regarding the second order condition (38) (item (iii)), we use the identity (23) and note

that only W1 depends on y (actually, in the form W1 ≡ W1(Â
T

r Ey, µ)), so that

Fyy(y
∗, k∗, µ∗)vv = −Âr

∂2f1
∂ζ21

(ÂTx∗, µ∗)(ÂT

r Ev)2 (41)

(mind that ÂT

r Ev is a scalar). Using the fact that ÂT

r Ev 6= 0 because Ev ∈ kerArWAT

r

(cf. Remark 3), together with Lemma 2 and the second condition in (31), we conclude

that condition (iii) is also met and therefore system (34) indeed undergoes a saddle-node

bifurcation at (y∗, µ∗), as we aimed to show in the second step of the proof.

2. In item 1 above we have proved that y∗ experiences a saddle-node bifurcation (as µ varies)

in the hyperplane defined by k∗. This means that either for µ > µ∗ or µ < µ∗ two equilibria

show up. We will generically denote both as yeq and the reader may distinguish them as yeq1

and yeq2 . As detailed in what follows, for µ close to µ∗ one of these is asymptotically stable

and the other one unstable, the latter displaying a one-dimensional unstable manifold.

The linearization of F at such equilibria yeq is defined by the matrix

Fy(y
eq, k∗, µ) = −Arfζ(A

T

r Eyeq + AT

nk
∗, µ)AT

r E = −ArW
eqAT

r E,

where the notation W eq is aimed at indicating that the weight values (actually W1) depend

on the equilibrium location. Following the reasoning above, the matrix ArW
eqAT

r E only

has real eigenvalues and has the same inertia as ArW
eqAT

r . Since no weight apart from

W1 may be negative, no more than one eigenvalue of ArW
eqAT

r E may then be negative,

according to Lemma 1, and this means that the eigenvalue transition implied by the saddle-

node bifurcation is necessarily a transition from the all-negative (i.e. asymptotically stable)

case (mind the − sign in Fy) to a scenario with only one positive eigenvalue, as claimed

above.

3. Finally, we show that for k 6= k∗, equilibrium solutions y of

y′ = −Arf(A
T

r Ey + AT

nk, µ) (42)
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are, for any µ, in one-to-one correspondence with those of (34), to be denoted by yeq, via

the relation

y = yeq +
k − k∗

n
1n−1. (43)

Indeed, assume that y annihilates the right-hand side of (42), and write the first argument

of f , using (43), as

AT

r E

(

yeq +
k − k∗

n
1n−1

)

+ AT

nk = AT

r Eyeq +
k − k∗

n
AT

r E1n−1 + AT

nk. (44)

Since E =
(

In−1 + 1n−11
T

n−1

)

and 1T

n−11n−1 = n− 1, we get

AT

r E1n−1 = AT

r 1n−1 + (n− 1)AT

r 1n−1 = nAT

r 1n−1,

so that (44) can be simplified to

AT

r Eyeq + (k − k∗)AT

r 1n−1 + AT

nk. (45)

Using AT

n = −AT

r 1n−1, (45) then reads as AT

r Eyeq+AT

nk
∗, and this first argument annihilates,

for any µ, the right-hand side of (34). The reverse way proceeds exactly in the same manner

to map equilibrium solutions of (34) into those of (42).

Not only the critical equilibrium (namely, y∗ for µ = µ∗) but also the two bifurcating

ones (yeq for µ near µ∗) at k = k∗ span, as expected, a whole line of equilibria by means

of the relation (43) when k varies; the reasoning above shows that both lines preserve the

spectral properties discussed in item 2 of the proof for the case k = k∗. Therefore, all

eigenvalues are negative in one of the bifurcating branches, and all but (a positive) one are

so in the other, exception made in both cases of a null eigenvalue owing to the existence of

an equilibrium line. This means that both equilibrium branches are normally hyperbolic;

the first one exponentially attracts nearby trajectories, because all eigenvalues (but the null

one) are real and negative, and this stability property is lost in the other branch by the sign

change in one eigenvalue. This completes the proof of Theorem 1. ✷

Remark 4. The second order condition in item (iii) within the proof of Theorem 1 can be

given a geometrical meaning using the identity (25) (cf. Remark 2). To put it in the simplest

possible setting let us ignore the dependence of Fy on parameters and on the matrix E and

hence define G(y) = ArW (AT

r y)A
T

r . As in (25), we have

detG(y) = W1K1(W̃ ) + det(ÃrW̃ ÃT

r ),

with K1(W̃ ) = ÂT

r Adj(ÃrW̃ ÃT

r )Âr. Note that the (scalar) coefficient of W1 does not vanish

since K1(W̃ ) is not null because it amounts to a sum of positive terms. Using now the fact

that W̃ does not depend on y, it follows that the gradient of detG(y) at a certain singular

point y∗ reads as

∇(detG(y)) =
∂2f1
∂ζ21

K1(W̃ )ÂT

r , (46)
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where ∇ expresses the partial derivatives w.r.t. y (written as a row matrix). The expression

above follows from the fact that W1 = ∂f1/∂ζ1 depends on y via the product ÂT

r y, and the

non-vanishing of the coefficient of ÂT

r in (46) indicates that the gradient is parallel to ÂT

r .

The fact that the kernel of ArWAT

r is not orthogonal to ÂT

r (cf. Remark 3) then expresses the

transversality of this kernel and the so-called singular set where the determinant vanishes,

whose tangent space is orthogonal to the gradient vector. This defines the singular point

y∗ as a fold. This property can be actually proved equivalent to the second order condition

(iii) within the proof of Theorem 1, as can be easily checked by differentiating the identity

Adj(G)G = (detG)I from elementary linear algebra.

4.2 Multiple negative weights

It is natural to inquire whether the saddle-node bifurcation phenomenon discussed above can

be also characterized in a setting with multiple negative weights, possibly under additional

assumptions. The answer is positive essentially under conditions (a)-(b) of Proposition 2

(cf. (c)-(d) below), which guarantee a minimal rank deficiency in the reduced nodal matrix

even in the presence of multiple negative weights (a property that followed automatically

in a setting with a unique negative weight, as shown in item (c) of the aforementioned

Proposition). The key aspect is that the transversality assumption (32) still holds in this

broader context, as shown below. Note however that Lemma 1 does no longer apply and,

therefore, the bifurcation transition along the equilibrium set will be from k to k+1 positive

eigenvalues (that is, the number k of positive eigenvalues need not vanish as it did in Theorem

1).

Theorem 2. Assume that x∗ is an equilibrium of (27) at a given parameter value µ = µ∗,

and let the hypotheses (a) and (b) of subsection 4.1 hold. Assume, additionally, the following.

(c) The sum of products of all tree weights but W1, extended over the set of spanning trees

including the first edge, does not vanish.

(d) The sum of products of all tree weights, extended over the set of spanning trees which

do not include the first edge, does not vanish, exception made of the case in which that

edge is a bridge.

Provided that the conditions in items 1 and 2 of Theorem 1 are also met, then (27) has a

(locally) unique equilibrium line comprising x∗ at µ = µ∗, which bifurcates into two as µ

undergoes the value µ∗. Both bifurcating lines are normally hyperbolic, and the number of

negative eigenvalues in both lines differ in exactly one.

Proof. The proof follows that of Theorem 1, although we will need to check explicitly that

the transversality assumption (32) is met in these new conditions. As in Lemma 3, we may

again perform a reduction to the dynamics of (34), which has an equilibrium y∗ that can

be checked to experience a saddle-node bifurcation at µ = µ∗: now ArWAT

r depicts a simple

zero eigenvalue because under condition (c) we may apply item (a) of Proposition 2 to show

that the rank deficiency of ArWAT

r is indeed one.
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The conditions in (37) and (38) will follow in this setting from the fact that (32) still

holds, as we show in the sequel. Note in advance that, assuming (32) not to hold, the proof

of Lemma 2 applies in this context up to the derivation of (33) (namely, ÃrW̃ ÃT

r v = 0) for a

certain v ∈ kerArWAT

r −{0} satisfying ÂT

r v = 0, but now the matrix W̃ is no longer positive

definite as it were in Lemma 2.

In our present framework, let us first consider the case in which the first edge is a bridge.

This means that it enters all spanning trees, so that the determinantal expansion of the

reduced nodal matrix reads as W1K1(W̃ ), where the coefficient K1(W̃ ) is given by the sum

arising in item (c). Since this coefficient is assumed not to vanish, the singularity of the

reduced nodal matrix yields W1 = 0. The identity (23) then amounts to ArWAT

r = ÃrW̃ ÃT

r .

Note also that, as proved in item (a) of Proposition 2, the reduced nodal matrix ArWAT

r

(and therefore ÃrW̃ ÃT

r ) is rank-deficient by one. On the other hand, a well-known graph-

theoretic property says that if W1 is a bridge then ÃT

r is itself rank-deficient by one, so that

ker (ÃrW̃ ÃT

r ) = ker ÃT

r . This means that ÃT

r v = 0, and we then proceed as in Lemma 2.

If the first edge is not a bridge things are simpler. In this case item (d) yields a con-

tradiction with the condition ÃrW̃ ÃT

r v = 0 above; indeed, as indicated in Remark 2, the

determinant of this matrix equals the sum arising in item (d), which is assumed not to

vanish.

This way (32) holds regardless of the fact that the first edge is a bridge or not, and the

remainder of the proof then proceeds as in Theorem 1. ✷

5 Examples

The results of Sections 3 and 4 are exemplified below using several networked systems. The

properties of nodal matrices discussed in Section 3 are applied to some signed graphs in

subsection 5.1. In turn, subsections 5.2 and 5.3 include a bifurcation analysis of a problem

in which the nonlinear flow is a sinusoidal one, inspired in the Kuramoto models discussed

in subsection 2.2.2. The goal is to show how Theorem 1 can be exploited, and our analysis

will in particular extend some results reported in [16]. Finally, the example in subsection

5.4 is aimed at motivating further study concerning the transversality requirements in the

saddle-node bifurcation characterization (Theorems 1 and 2) in broader contexts.

5.1 Signed graphs

Nicely simple corollaries of Propositions 1 and 2 in Section 3 hold for signed graphs, originally

introduced by Harary [22]. A signed graph or s-graph is a graph (V,E) endowed with a map

E → {−1, 1}, that is, an assignment of either a +1 or a −1 weight to all m edges.

In this context, a flow problem which arises as a particular case of (6) is

x′ = −AWATx (47)

with the diagonal entries of W now lying on {1,−1}. This is a potential-driven flow for

which the flowrates u (cf. (4)) are given by the linear relation WATx. With respect to the

Laplacian dynamics (7), now the presence of a −1 weight value, say in an edge connecting i
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and k, models a flow in which the adjacent agents i, k tend to increase the difference between

xi and xk, since the flow from i to k now equals xk−xi (instead of xi−xk, as in 2.2.1). This

means that the cooperative assumption implicit in the choice of positive weights is replaced

by a competitive one, the latter being described by negative weights. Such pairs of actors

are sometimes called antagonistic or contrarians (see e.g. [3, 23, 33, 45]).

Contrary to the results known for (7) (or (47), with positive diagonal W ), in which

equilibria define a line (provided that the network is connected), the presence of negative

weights may now result in higher dimensional equilibrium sets, as discussed in Section 3.

The cases in which this may happen are compiled in the first item of Corollary 1 below.

Minimal rank deficiencies can be also easily characterized in some cases. Since all weights

are +1 or −1, we may now define a spanning tree as positive or negative simply if its weight

product is +1 or −1, respectively, or, equivalently, if it contains an even (resp. odd) number

of edges with negative weight.

Corollary 1. Let the dynamical system (47) be defined on a connected signed digraph. Then

the following assertions hold.

1. The dimension of the equilibrium set is higher than one if and only if the numbers of

positive and negative spanning trees coincide.

2. Provided that the requirement in item 1 holds, this dimension is exactly two if any one

of the following conditions are met:

(a) There exists an edge such that the numbers of positive and negative trees including

that edge are not the same.

(b) There exists an edge such that the numbers of positive and negative trees not

including that edge are not the same.

(c) The signed graph has one negative weight (or one positive weight).

These results follow immediately from Propositions 1 and 2. Indeed, for the sum of weight

products to vanish in a signed graph, the amount of positive trees (which are responsible for

a +1 term in the sum) must obviously match the number of negative trees (yielding a −1 in

the sum). The other assertions are checked analogously in light of Proposition 2.

This corollary can be applied in a straightforward manner to certain topologies. For any

cycle Cn with odd n the first item shows that for any assignment of signs the dimension of

the equilibrium set is one because the number of spanning trees (namely, n) is odd; therefore

the coincidence in that item cannot happen. For cycles Cn with even n, an assignment

of signs yielding a singular reduced nodal matrix (which occurs iff there are n/2 positive

and n/2 negative edges) necessarily yields a minimal rank deficiency, since the number of

spanning trees arising in both items (a) and (b) is odd and hence the corresponding numbers

of negative and positive trees cannot be the same. For complete graphs Kn, the number of

spanning trees is nn−2 according to Cayley’s formula; this number is odd if n is odd and,

again, the first item above implies that equilibria define a line.

22



Simple examples illustrating the results above can be defined using the graphs shown in

Figure 1. The first case, on the left of the figure, is simply a 4-cycle with two positive signs

(continuous lines) and two negative signs (dashed lines). This graph has just four spanning

trees, two of which are positive and the other two negative. The second example, on the

right, depicts a complete graph K4 with two positive and four negative signs. According to

Cayley’s formula this graph has 42 = 16 spanning trees and, as detailed later, exactly half of

them are positive. This means that the dynamical system (47) should exhibit in both cases

a linear manifold of equilibria with dimension greater than one.

1x 2x

3x

2x

4x4x 3x

1x

Figure 1: Sign assignments yielding degenerate flow dynamics on (a) a 4-cycle; (b)K4. Edges

with a negative sign are dashed.

In the first case, the remarks above concerning cycles Cn with even n predict a minimal

rank deficiency, that is, the dimension of the equilibrium set should be two in this example.

To check that in practice, we number and orientate each edge beginning on the top and

according to a clockwise orientation of the cycle. Letting W = diag (1, 1,−1,−1), the right-

hand side of (47) reads in this case as

−AWAT =











0 1 0 −1

1 −2 1 0

0 1 0 −1

−1 0 −1 2











,

The kernel of this matrix defines the equilibrium set and is defined by the relations

x2 = x4 =
x1 + x3

2
,

hence defining a two-dimensional linear manifold (a plane) of equilibria, as expected. Notice

that these equilibrium points arise from a constant flow xi − xi+1 (i = 1, . . . , 4, with the

terminological abuse x5 = x1) which annihilates all derivatives x′
i, flowing in the clockwise

(resp. counterclockwise) direction if x1 > x3 (resp. if x1 < x3). The equilibrium plane

includes the line x1 = x2 = x3 = x4 for which the flow vanishes.

The example on the right of Figure 1 is aimed at illustrating that a higher (> 2) dimen-

sional equilibrium set may actually occur. The 42 = 16 spanning trees of this signed graph

are shown in Figure 2. Note that the first four and last four of them are negative, whereas
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the other eight are positive; the dimension of the equilibrium set must therefore be greater

than one. Moreover, one can check that the trees families arising in items (a) and (b) of

Corollary 1 also have exactly the same number of positive and negative trees for any choice

of an edge. In this direction, note first that Kn has 2nn−3 trees including a given edge, as

a consequence of the homogeneity of Kn; indeed, in the whole set of spanning trees a total

amount of n(n− 1)/2 edges are distributed uniformly among nn−2 spanning trees, each one

including n− 1 edges. This means that any fixed edge belongs to

(n− 1)nn−2

n(n− 1)/2
= 2nn−3

spanning trees, as claimed. It follows that there are (n−2)nn−3 spanning trees not including

a given edge. For the case n = 4 both numbers are 2 · 4 = 8.

By the symmetric sign assignment, we cover all possible cases just by choosing a positive

edge and a negative edge. If we fix e.g. the positive edge on the left of the figure, the set of

spanning trees including that edge are those in the first row of Figure 2, whereas the second

row depicts the trees not including that edge. It is a trivial matter to check that both rows

include four positive and four negative trees, ruling out (for positive edges) the hypotheses

arising in items (a) and (b) of Corollary 1. The same holds for negative edges (e.g. focusing

on spanning trees including the edge on the top, the trees 1, 14, 15 and 16 are negative

whereas numbers 5, 6, 9 and 10 are positive).

Figure 2: Spanning trees of the signed-K4 example.

To compute the actual dimension of the equilibrium set we define the numbering and

orientation of the edges by the sequence ((1, 2), (2, 3), (3, 4), (4, 1), (1, 3), (2, 4)), which yields,

with weights W = diag (−1, 1,−1, 1,−1,−1),

−AWAT =











1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1











.

Now the equilibrium set is three-dimensional, being defined by the identity

x1 + x4 = x2 + x3, (48)
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so that in this case the rank drop in the product AWAT (and the dimension of the equilibrium

set) is indeed greater than two. Note that, again, these equilibrium solutions yield non-

vanishing flows in the graph edges, except for those in the line x1 = x2 = x3 = x4.

5.2 Case of study: a sinusoidal flowrate

Driving the attention to the results in Section 4 let us assume that, in the setting of Theorem

1, the nonlinear flowrate in the first edge takes the form

f1(ζ1, µ) = ω + µ sin(ζ1), (49)

where ω is a fixed real constant. Note that the form assumed for f1 equals the one arising

in Kuramoto models of coupled oscillators, as discussed in subsection 2.2.2. The weight in

the first edge will capture not only the bifurcation parameter µ but also the nonlinearity,

according to (29), which yields in this case

W1(ζ1, µ) = µ cos(ζ1). (50)

The remaining edges are assumed to satisfy the requirements (b) and (c) in subsection 4.1,

with flowrates given by (28).

The specific form of the nonlinear flowrate (49) makes it possible to guarantee the ex-

istence of a bifurcating equilibrium for this flow network, by using a Lyapunov-Schmidt

reduction. To simplify the discussion we will assume for the moment that the first edge

(namely, the one accommodating the nonlinear flow) is not a bridge and, without loss of

generality, we work in the invariant hyperplane defined by k∗ = 0, in the notation of Lemma

3 and Theorem 1. With the splitting shown in (22), the dynamics on this hyperplane (cf.

(34)) reads as

y′ = −Ârf1(ζ1, µ)− ÃrW̃ ÃT

r Ey. (51)

Note that ζ1 stands for the product ÂT

r Ey; this, together with equation (23), allows us to

write the equilibrium conditions for (51) as −Ârf1(Â
T

r Ey, µ) +W1ÂrÂ
T

r Ey−ArWAT

r Ey = 0

and, using Lemma 2, we split this condition in two, namely

f1(Â
T

r Ey, µ) = W1Â
T

r Ey (52a)

ArWAT

r Ey = 0. (52b)

The former is simply the scalar equation

ω + µ sin(ζ1) = W1ζ1. (53)

Note that the bifurcation condition stated in the first item of Theorem 1 fixes the value of

W1 = µ cos(ζ1) < 0; from elementary calculus we then conclude that the unique solution to

tan(ζ1) = − ω

W1

+ ζ1 (54)
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in (−π/2, π/2) yields a singular equilibrium (ζ∗1 , µ
∗). The remaining equilibrium components

can be derived in a Lyapunov-Schmidt fashion from the second equation in (52), restated as

W1ÂrÂ
T

r Ey + ÃrW̃ ÃT

r Ey = 0. (55)

We use the fact that ÃrW̃ ÃT

r is nonsingular provided that the first edge is not a bridge, since

Ãr has in this case full row rank and W̃ is positive definite. The remaining components of

the equilibrium Ey will come from the splitting

Ey = (ArA
T

r )
−1(ArA

T

r )Ey = (ArA
T

r )
−1(ÂrÂ

T

r Ey + ÃrÃ
T

r Ey). (56)

Indeed, inserting this splitting into the second term of the left-hand side of (55) we get

the component (ArA
T

r )
−1ÃrÃ

T

r Ey in terms of ζ1 = ÂT

r Ey. The example in subsection 5.3

illustrates this idea in a simpler setting.

The discussion above guarantees that a singular equilibrium indeed exists for the flow

network with nonlinearity given by (49). Conditions guaranteeing that a saddle-node bifur-

cation actually occurs come from Theorem 1, according to which it is enough to check the

transversality conditions in (31). In our framework these are easily seen to amount to

µ 6= 0 6= sin(ζ1). (57)

In light of (54), it is a trivial matter to check that both conditions hold provided that ω 6= 0;

under this assumption a saddle-node bifurcation necessarily exists. The example discussed

in subsection 5.3 will be of help in order to illustrate this analysis.

Note finally that if the edge accommodating the nonlinear flowrate is a bridge, things

get simpler. This is in particular the two-oscillators case considered in [16] (cf. Section 3.2

there), where a saddle-node bifurcation is reported for the parameter value µ = −ω, with

cos(ζ1) = 0 (µ and ω standing for a12 and ω1, respectively, in the notation of [16]; the identity

µ = −ω follows from the condition κ = 1 there). The results reported in [16] can be seen

as a particular instance of the phenomenon predicted by our previous analysis; specifically,

their ad hoc conditions are now better understood in the light of Theorem 1 above: indeed,

if the first edge is a bridge then it necessarily belongs to all network spanning trees, and

the first item in Theorem 1 then yields W1 = 0. In light of (50) this necessarily means that

either µ or cos(ζ1) are null, but the vanishing of the former is ruled out by the conditions

(57) emanating from the second item in Theorem 1. The condition sin(ζ1) = 1 then follows

(mind the angle convention in [16]), and the bifurcation value µ = −ω is finally derived in

our approach by setting W1 = 0 in (53).

5.3 An example on a 3-cycle

To fix ideas, let us consider a potential-driven flow defined on a 3-cycle with a sinusoidal

flowrate in one of the edges. This basic topology already displays non-trivial bifurcation

phenomena and at the same time is simple enough to carry out explicit computations and

this way serve illustrative purposes, regarding in particular the analysis in subsection 5.2.
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Assume that the first edge is directed from nodes 1 to 2 and accommodates a nonlinear

flow defined by the flowrate depicted in (49), whereas edges 2 and 3 are directed from node

2 to node 3 and from node 3 to node 1, respectively, with the flowrates in those edges given

by W2(x2 − x3) and W3(x3 − x1), both W2, W3 being positive.

System (27) reads as

x′
1 = −ω − µ sin(x1 − x2) +W3(x3 − x1) (58a)

x′
2 = ω + µ sin(x1 − x2)−W2(x2 − x3) (58b)

x′
3 = W2(x2 − x3)−W3(x3 − x1) (58c)

whereas, taking k∗ = 0, the reduction (34) is

y′1 = −ω − µ sin(y1 − y2) +W3(−2y1 − y2) (59a)

y′2 = ω + µ sin(y1 − y2)−W2(y1 + 2y2). (59b)

To make computations as simple as possible we further fix W2 = W3 = 1. Note that the

determinantal expansion (19) yields, in a 3-cycle, the sum of productsW1W2+W1W3+W2W3

and the critical value arising in item 1 of Theorem 1 (cf. (30)) is

W1 = − W2W3

W2 +W3

,

and therefore W1 = −1/2 if W2 = W3 = 1.

With W2 = W3 = 1, equilibria of (59) are easily checked to satisfy the linear restriction

y1 + y2 = 0, which makes it possible to write the scalar nonlinear equation (53) as

ω + µ sin(2y1) + y1 = 0. (60)

The singular solutions for this scalar equation correspond to the critical value

W1 = µ cos(2y1) = −1/2. (61)

From (60) and (61) one easily gets the y1-component of the singular equilibrium from (54),

that is,

tan(2y1) = 2(ω + y1). (62)

For any ω ∈ R, this equation has a unique solution y∗1 with 2y1 ∈ (−π/2, π/2), which can be

only written explicitly if ω = 0 (in this case, and only in this case, y∗1 = 0). For any ω, the

bifurcation value can be written in terms of y∗1 simply as

µ∗ =
−1

2 cos(2y∗1)
. (63)

Finally, the other component of the singular equilibrium solution is just y∗2 = −y∗1.

According to the analysis in subsection 5.2 it is expected that the flow should actually

undergo a saddle-node bifurcation if ω 6= 0 (see specifically (57)). This is indeed the case;
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using the scalar reduction (60), arguments from elementary calculus (which we omit for the

sake of brevity) show that a pair of equilibrium solutions do exist for µ less than (and close

enough to) µ∗, the latter given in (63), whereas no solution is locally displayed if µ > µ∗ (and

always in a neighborhood of µ∗). By contrast, if ω = 0 the failing of the second condition

in (57) at the origin rules out a saddle-node bifurcation but yields in this case a pitchfork

bifurcation; note, indeed, that y1 = 0 is always a solution to (60) if ω = 0, and that locally

around µ∗ = −1/2, two additional (resp. no additional) solutions are depicted for µ < µ∗

(resp. µ > µ∗).

5.4 On the transversality condition (32)

Our last example is aimed at illustrating that the transversality requirements in the saddle-

node bifurcation (Theorems 1 and 2) may not be automatically met in more general settings.

Specifically, we want to show that the claim in Lemma 2 (that is, the property depicted in

(32)) may not be true if another weight apart from W1 becomes negative and the tree-based

conditions in items (c) and (d) of Theorem 2 do not hold. To this end, consider the weighted

digraph depicted in Figure 3, which is obtained after removing one edge from K4.

2W

4W

5W 1W
3W

Figure 3: Weighted K4 − {e}.

We let the edge corresponding to the NW-SE diagonal in Figure 3 be the first one, and

direct it from NW to SE, and number and direct the remaining ones clockwise and beginning

at the top. Some simple computations yield

ArWAT

r =





W1 +W2 +W5 −W2 −W1

−W2 W2 +W3 −W3

−W1 −W3 W1 +W3 +W4



 .

By taking W2 +W3 = 0, with W2 6= 0 6= W3, the second column of this matrix easily shows

that Âr =
(

1 0 −1
)T

may well belong to the image of ArWAT

r (so that (32) is not met)

even when this matrix is singular; the latter may be shown to happen e.g. if W4 +W5 = 0,

since the determinant of the nodal matrix above can be easily written as

(W2 +W3)(W1W4 +W1W5 +W4W5) +W2W3(W4 +W5). (64)

The condition Âr ∈ imArWAT

r holds here regardless of the sign of W1 and may well happen

if W1 is negative; note that the above scenario also requires at least W2 or W3 to become
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negative, in addition to W4 or W5 if they are assumed not to vanish. Moreover, note that

the coefficient of W1 (corresponding to K1(W̃ )) in the determinantal expansion (64) reads

as (W2+W3)(W4+W5), whereas K0(W̃ ) is in this case W2W3(W4+W5)+ (W2+W3)W4W5;

both coefficients vanish under the above mentioned conditions W2 + W3 = 0 = W4 + W5,

ruling out the hypotheses stated in items (c) and (d) of Theorem 2.

6 Concluding remarks

We have addressed in this paper certain local bifurcations of parameterized potential-driven

flows defined on networks. Motivated by consensus protocols in linear settings, and Kuramoto-

type models in nonlinear ones, our analysis is focused on problems in which some of the net-

work weights eventually become negative, modelling antagonistic pairs of actors. We have

derived some properties of independent interest concerning nodal matrices, and our results

find applications in the context of signed graphs.

Several lines are open for future research. The saddle-node bifurcation analysis naturally

admits an extension to fully nonlinear problems, and other bifurcations of equilibria might

be studied in similar terms. From a different perspective, non-isolated equilibria have re-

ceived attention within the theory of bifurcation without parameters (cf. [30] and references

therein), and a connection to this theory might be fruitful.

Acknowledgement. The author gratefully acknowledges several useful bibliographic re-

marks from an anonymous referee.
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[10] M. Bürger, D. Zelazo and F. Allgöwer, Duality and network theory in passivity-based

cooperative control, Automatica 50 (2014) 2051-2061.
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in S. Schöps et al., eds., Progress in Differential-Algebraic Equations, 127-151, Springer,

2014.

[28] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in Int.

Symp. on Mathematical Problems in Theoretical Physics, Kyoto, Japan. Lecture Notes

in Physics 39, Springer, pp. 420-422, 1975.

[29] R. Lamour, R. März and C. Tischendorf, Differential-Algebraic Equations: A Projector

Based Analysis, Springer, 2013.

[30] S. Liebscher, Bifurcation without Parameters, Springer, 2015.

[31] J. R. Magnus and H. Neudecker,Matrix Differential Calculus with Applications in Statis-

tics and Econometrics, Wiley, 2007.

[32] J. Mayes and M. Sen, Approximation of potential-driven flow dynamics in large-scale

self-similar tree networks, Proc. R. Soc. A 467 (2011) 2810-2824.

[33] Z. Meng, G. Shi, K. H. Johansson, M. Cao and Y. Hong, Behaviors of networks with

antagonistic interactions and switching topologies, Automatica 73 (2016) 110-116.

[34] R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked

multi-agent systems, Proc. IEEE 95 (2007) 215-233.

[35] K.J. Palmer, Linearization near an integral manifold, J. Math. Anal. Appl. 51 (1975)

243-255.

[36] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, 2001.

[37] A. Rahmani, M. Ji, M. Mesbahi and M. Egerstedt, Controllability of multi-agent sys-

tems from a graph-theoretic perspective, SIAM J. Control Optim. 48 (2009) 162-186.

[38] A. Recski, Matroid Theory and its Applications in Electric Network Theory and in

Statics, Springer-Verlag, 1989.

[39] R. Riaza, Differential-Algebraic Systems, World Scientific, 2008.
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