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STABILITY LOSS IN QUASILINEAR DAES
BY DIVERGENCE OF A PENCIL EIGENVALUE∗

RICARDO RIAZA†

Abstract. The divergence through infinity of certain eigenvalues of a linearized differential-
algebraic equation (DAE) may result in a stability change along an equilibrium branch. This behavior
cannot be exhibited by explicit ODEs, and its analysis in index one contexts has been so far unduly
restricted to semiexplicit systems. By means of a geometric reduction framework we extend the
characterization of this phenomenon to quasilinear DAEs, which comprise semiexplicit problems as
a particular case. Our approach clarifies the nature of the singularities which are responsible for the
stability change and also accommodates rank deficiencies in the leading system matrix. We show
how to address this problem in a matrix pencil setting, an issue which leads to certain results of
independent interest involving the geometric index of a quasilinear DAE and the Kronecker index
of its linearization. The results are shown to be of interest in electrical circuit theory, since the
differential-algebraic network models actually used in circuit simulation are not in semiexplicit but
in quasilinear form.
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1. Introduction. Differential-algebraic equations (DAEs) nowadays play an im-
portant role in dynamical system modeling. Quasilinear DAEs are found in most
applications [21, 22, 36, 48] and have the form

(1) A(x, μ)x′ = f(x, μ)

in an autonomous, parametrized context. Here A ∈ Ck(W0 × I,Rm×m), Rm×m

denoting the set of real m × m matrices, and f ∈ Ck(W0 × I,Rm); the set W0

is open in Rm, I is a real interval where the parameter μ takes values, and k is
large enough as to accommodate eventually needed differentiations. From both the
analytical and numerical perspectives, different approaches have been developed in
the last decades for the study of so-called regular DAEs; cf. [9, 15, 19, 22, 26, 30,
37, 45] and references therein. Most of these frameworks are based on different index
notions (which include the differentiation, geometric, tractability, perturbation, and
strangeness indices, among others) and, roughly speaking, unveil the DAE behavior
in terms of some type of related explicit ODE.

However, in the presence of singularities, it is not even possible to describe the
local behavior of a DAE in terms of an explicit ODE. New dynamic phenomena are
exhibited by singular DAEs, impasse points being a paradigmatic instance [10, 11,
31, 34, 35, 41, 46]. In parametrized problems, a stability change phenomenon due to
the divergence of an eigenvalue was first analyzed by Venkatasubramanian [49, 50]
and later addressed by several authors [4, 5, 6, 42, 43, 52]. This arises in different
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application fields [3, 24, 44, 51]; related problems are discussed in [8, 23, 53]. The
change of stability occurs when an equilibrium branch intersects a singular manifold,
and this results in the divergence of one (or more) eigenvalue(s) through infinity. This
is a consequence of the fact that the leading coefficient ar(μ) of the polynomial which
defines these eigenvalues (cf. (25) in subsection 4.2) vanishes at a critical parameter
value. When the remaining eigenvalues lie on C−, the equilibrium branch experiences
a stability loss. This is the case in the voltage collapse phenomenon examined by
Venkatasubramanian in his seminal work [49].

This change of stability was called in [49] a “singularity-induced bifurcation,” an
expression which is often used in the literature. Here the term “singularity” refers to
the singular manifold mentioned above, and “bifurcation” is used to refer to a system
which is not structurally stable in the sense that there exist arbitrarily close systems
which are not topologically equivalent to it [2, 17]. In a parametrized family, a change
in the qualitative properties of the system occurs when the parameter undergoes a
(so-called) bifurcation value. In our case there is a change of stability and hence a
change in the topological properties of the local phase portrait, but the reader should
not expect any splitting of equilibria, in contrast to what happens in explicit ODEs
when an eigenvalue of the linearization along an equilibrium locus vanishes at a given
parameter value.

Such a stability change cannot happen in the context of explicit ODEs, for which
the aforementioned coefficient ar(μ) never vanishes. This phenomenon is therefore
specific to implicit ODEs and, in particular, DAEs. However, the working setting of
the references cited above is unduly restricted to the context of semiexplicit DAEs,
which have the structure

y′ = h(y, z, μ),(2a)

0 = g(y, z, μ),(2b)

the algebraic (nondifferential) constraints being given explicitly. This semiexplicit
form can be seen as a particular case of (1) in which A has the (constant) block-
diagonal form block-diag(I, 0). However, many DAEs in applications are not in
semiexplicit form, an important instance being defined by the models resulting from
modified nodal analysis (MNA) of electrical circuits (cf. section 5).

The present paper undertakes the goal of extending the characterization of this
phenomenon to the quasilinear index one DAE (1), without assuming any special
structure on it. Notice that [42, Theorem 1] also characterizes related phenomena
in quasilinear problems, but in an index zero context, that is, in a setting which
implies that A is nonsingular except on the singular hypersurface (this precludes,
in particular, semiexplicit systems). By contrast, the present analysis is directed to
systems with an everywhere rank-deficient matrix A, found in most applications and
including semiexplicit DAEs.

Our approach will be based on reduction methods and the geometric index notion.
Besides driving the analysis beyond the semiexplicit context, the present approach
provides additional insight into the geometric structure of the singularities from which
the stability change stems. The local DAE trajectories will lie on a set W1(μ) which
is not explicitly given but which by certain hypotheses can be guaranteed to be a
manifold. The singularity will be due to the lack of transversality of this set with
the space kerA(x, μ). These underlying geometric properties are somehow hidden in
semiexplicit problems due to the very particular structure of these systems; previous
statements for semiexplicit DAEs can be derived as a corollary of the more general
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result here presented as detailed at the end of subsection 4.2. Moreover, it will be
shown that this stability loss phenomenon may also result from rank changes in the
leading matrix A(x, μ), a behavior which cannot be depicted by semiexplicit DAEs
simply because the leading matrix is constant for them.

Some results of independent interest will show up in the analysis. The main
issue is how to guarantee that the results can be addressed via linearization in a
matrix pencil setting, an approach which is well-suited for semiexplicit DAEs [6, 42]
but whose extension to quasilinear problems displays several difficulties. Extending
previous results from [32, 37, 40, 45] we will prove that at equilibrium points where a
quasilinear DAE has a well-defined geometric index, the local pencil is a regular one
with the same index. This property, of general interest in DAE theory, will be based
on the fact that the reduction process supporting the geometric index notion conveys
a Kronecker index reduction in the local pencil. The fact that the linear stability
properties (e.g., exponential stability or hyperbolicity) of equilibria are characterized
by the pencil eigenvalues follows as a byproduct of this analysis. In particular, this
property will be used in section 4 to show that the number of diverging eigenvalues
is determined by the index of the local pencil at the singularity.

The paper is organized as follows. After presenting background material in sec-
tion 2, we discuss in section 3 the aforementioned issues involving the relation between
the geometric index of a quasilinear DAE and the Kronecker index of its linearization.
Supported on these results, the stability change phenomenon described above is char-
acterized for quasilinear DAEs in section 4. Finally, section 5 applies this framework
to MNA-modeled electrical circuits.

2. Background.

2.1. The geometric index and reduction methods for regular DAEs.
Fixing in (1) the parameter μ at a given value, we are led to an autonomous,
nonparametrized quasilinear DAE which, with notational abuse, can be written in
the form

(3) A(x)x′ = f(x),

whereA ∈ Ck(W0,R
m×m), f ∈ Ck(W0,R

m), W0 being an open subset of Rm. In order
to undertake the analysis of the parametrized quasilinear DAE (1), it is essential to
understand how reduction techniques and the geometric index notion unveil the local
behavior of (3). Geometric reduction methods were developed in the 1990s mainly
by Reich [38, 39] and Rabier and Rheinboldt [33]. For the sake of completeness we
present below a brief introduction to this approach; detailed discussions can be found
in [33, 37].

Our attention will be focused on problems in which A is rank-deficient in the
whole of W0. This covers, in particular, the case of semiexplicit DAEs, which can be
written in the form

(4)

(
Ir 0
0 0

)(
y′

z′

)
=

(
h(y, z)
g(y, z)

)
,

with h ∈ Ck(W0,R
r), g ∈ Ck(W0,R

p), and W0 open in Rr+p.
To begin with, note that any C1 solution of (3) must lie on the set

(5) W1 = {x ∈ W0 / f(x) ∈ imA(x)}.
Fix a point x∗ ∈ W1, and assume that the leading matrix A(x) has constant rank
r < m on some neighborhood of x∗. Then, on a possibly smaller neighborhood U ,
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there exist matrix-valued maps H ∈ Ck(U,R(m−r)×m) and P1 ∈ Ck(U,Rr×m) such
that, for all x in U , the identity kerH(x) = imA(x) holds and the restriction
P1(x)|imA(x) yields an isomorphism imA(x) → Rr (see, e.g., [1]). Note that both
H(x) and P1(x) have maximal rank (m− r and r, respectively).

By construction, given x ∈ U it is true that v ∈ imA(x) ⇔ H(x)v = 0, and there-
fore the setW1 can be locally described asW1∩U = {x ∈ U / H(x)f(x) = 0}.We say
that x∗ ∈W1 is a 0-regular point if the aforementioned local constant rank condition
on A(x) holds and, additionally, H(x)f(x) is a submersion at x∗ (i.e., the derivative
(Hf)′ has maximal rank m− r). It is worth remarking that the submersion condition
does not depend on the choice of H(x) and is actually equivalent to the requirement
that the map F :W0 ×Rm → Rm defined by F (x, p) = A(x)p− f(x) is a submersion
at (x∗, p∗) for any choice of p∗ satisfying F (x∗, p∗) = 0 (cf. Lemma 3.1 in [45]). The
assumption that Hf is a submersion at x∗ together with the local description of W1

as the zero set of H(x)f(x) locally makeW1 an r-dimensional Ck-manifold around x∗.
Now, if ϕ1 : Ω1 → W1 ∩ U0 is a local parametrization of the set W1 around a

0-regular point x∗, with Ω1 open in Rr and U0 ⊆ U , it is not difficult to check that
x(t) is a solution of (3) within U0 if and only if x(t) ∈ W1 for all t and ξ(t) = ϕ−1

1 (x(t))
is a solution of

(6) A1(ξ)ξ
′ = f1(ξ), ξ ∈ Ω1 ⊆ R

r,

with

A1(ξ) = P1(ϕ1(ξ))A(ϕ1(ξ))ϕ
′
1(ξ),(7a)

f1(ξ) = P1(ϕ1(ξ))f(ϕ1(ξ)).(7b)

Details can be found in [45, Theorem 3.1]. The system (6) is called a one-step local
reduction of the original DAE (3). Notice the quasilinear form of the reduction (6).

Let ξ∗ stand for ϕ−1
1 (x∗); the point x∗ is said to be regular with geometric index

one if A1(ξ
∗) ∈ Rr×r is nonsingular. Again, this notion is not dependent on the choice

of the reduction operators P1, ϕ1. In this situation, the reduction (6) can be obviously
rewritten as an explicit ODE on some neighborhood of ξ∗ within Ω1. This provides
a local coordinate description of the flow defined by the DAE on the manifold W1,
which is locally filled by solutions of the equation.

If A1 is a singular matrix at ξ∗, we may check if the constant rank and submersion
conditions discussed above hold for the reduction (6). If this is the case, we may repeat
the procedure to compute a two-step local reduction (A2, f2) via reduction operators
P2, ϕ2, and so on. If the procedure can be carried over until a nonsingular Aν is met,
then x∗ is said to be regular with geometric index ν, provided that Aν is the first
nonsingular matrix in the chain. Again, the ν-step reduction

(8) Aν(u)u
′ = fν(u)

can be locally rewritten in an explicit manner and can be understood to describe in
coordinates the flow induced by the DAE on the so-called solution manifold.

The following characterization of index one points will be useful later (cf. [45,
Proposition 3.1]).

Proposition 1. Assume that A(x) has constant rank r < m around a given
point x∗ ∈W1. Then x∗ is regular with index one for (3) if and only if the matrix

(9) S(x∗) =
(
P1(x

∗)A(x∗)
(Hf)′(x∗)

)

is nonsingular.



2230 RICARDO RIAZA

The idea supporting this result is that A1(ξ
∗) = P1(ϕ1(ξ

∗))A(ϕ1(ξ
∗))

ϕ′
1(ξ

∗) is a nonsingular matrix if and only if kerP1(ϕ1(ξ
∗))A(ϕ1(ξ

∗))∩imϕ′
1(ξ

∗) = {0}
(note that kerϕ′

1(ξ
∗) = {0} since ϕ1 is a local parametrization); the subspace

imϕ′
1(ξ

∗) describes the tangent space toW1 at x
∗ and can be written as ker (Hf)′(x∗).

Since (Hf)′(x∗) has maximal rank, it follows that the index one condition amounts to
kerP1(ϕ1(ξ

∗))A(ϕ1(ξ
∗))∩ker (Hf)′(x∗) = {0}, a condition which is indeed equivalent

to the nonsingularity of S(x∗).
Provided that A has constant rank around x∗ and that Hf is a submersion at x∗,

the identity kerP1(ϕ1(ξ
∗))A(ϕ1(ξ

∗)) = kerA(ϕ1(ξ
∗)) holds by the construction of P1.

From the remarks above it follows that, in this situation, the failing of the index one
requirement is due to the loss of transversality of the space kerA and the manifold
W1 at x∗.

2.2. Linearization, matrix pencils, and the Kronecker index. Let us now
focus on a given equilibrium point of (3), that is, a point x∗ ∈ W0 for which f(x

∗) = 0.
If x∗ is a regular point with geometric index ν, we may ask about the local qualitative
behavior of the flow defined by the DAE on the solution manifold (W1 in index
one problems) or, equivalently, about the qualitative properties of the equilibrium
u∗ for the reduction Aν(u)u

′ = fν(u), with x∗ = ϕ1 ◦ · · · ◦ ϕν(u
∗). The goal is to

figure out sufficient conditions guaranteeing that the linear stability properties of this
equilibrium can be addressed in matrix pencil terms; cf. section 3 below.

Given a pair of matrices A, B in Rm×m, the matrix pencil {A,B} is defined as
the one-parameter family {λA + B : λ ∈ C}. The spectrum σ(A,B) of the pencil is
the set {λ ∈ C / det(λA + B) = 0}. If there exists some λ ∈ C such that λA +B is
nonsingular, the matrix pencil is called regular [13]. For a regular pencil, there exist
nonsingular matrices E,F ∈ R

m×m such that [13],

EAF =

(
Is 0
0 N

)
, EBF =

(
W 0
0 Im−s

)
,(10)

where W ∈ Rs×s for some s ≤ m, and N ∈ R(m−s)×(m−s) is a nilpotent matrix with
index ν ≤ m−s, that is, a matrix verifying Nν = 0, Nν−1 	= 0. The multiplication by
nonsingular matrices E, F defines an equivalence relation on the set of matrix pencils
known as strict equivalence.

The matrices in (10) define the Kronecker canonical form of the pencil, and the
nilpotency index ν is called the Kronecker index of the matrix pencil; even though we
are restricting the analysis to regular pencils, this can be considered as a particular-
ization of a more general form accommodating also singular pencils [13]. The pencil
is said to have index zero if s = m, which amounts to requiring that A is nonsingular.
The index one case is characterized by a null matrix N of dimension m − s > 0: in
this situation, it is easy to check that s = rkA. On the contrary, in higher index cases
(ν ≥ 2) we have s < rkA.

Note that det(λA + B) is a polynomial in λ with degree no greater than m.
Regardless of the index, using the Kronecker canonical form it is easy to check that
for a regular pencil {A,B} the identity σ(A,B) = σ(−W ) holds. This means that the
spectrum has exactly s eigenvalues (counted with multiplicity) or, equivalently, that
the characteristic polynomial det(λA +B) has degree s. A regular pencil with index
ν ≥ 1 is said to have an infinite eigenvalue of multiplicity m− s. For later use, note
that the characteristic polynomial is preserved (up to a nonvanishing multiplicative
constant) by the aforementioned strict equivalence relation.



STABILITY LOSS IN QUASILINEAR DAES 2231

3. Geometric index vs. Kronecker index. When addressing the study of
equilibria for a quasilinear DAE of the form (3), a natural question arises, namely,
under which conditions the linear stability properties of the equilibrium for the flow
of the DAE can be characterized in terms of the linearized problem, that is, in terms
of the pencil {A(x∗),−f ′(x∗)}. Different sufficient conditions have been given in the
framework of the tractability index [27, 28, 29, 47] and the geometric index [32, 37, 40].

In particular, in [32, Lemma 5.1] it is shown that the matrix pencil spectrum is
preserved, disregarding multiplicities, in a one-step reduction of the DAE by proving
that the spaces ker (λA(x∗) − f ′(x∗)) and ker (λA1(ξ

∗) − f1
′(ξ∗)) are isomorphic.

Lemma 1 below comprises a slightly more general statement, namely, the result that
not only the spectrum but actually the characteristic polynomial of the pencil is
preserved (up to a nonvanishing multiplicative constant) in the reduction, the proof
just relying on elementary matrix pencil properties.

We also show that the reduction process which supports the geometric index
conveys a Kronecker index reduction in the linearized problem. The regularity of the
pencil at points with a well-defined geometric index, as well as the coincidence of the
geometric and the Kronecker indices, will follow as direct consequences.

Lemma 1. Assume that x∗ is a 0-regular equilibrium point of the DAE (3). If
the matrix pencil {A(x∗),−f ′(x∗)} is regular with Kronecker index ν, then the pencil
{A1(ξ

∗),−f1′(ξ∗)} coming from the one-step reduction (6) is regular with Kronecker
index ν− 1. Additionally, both pencils have the same characteristic polynomial (up to
multiplication by a nonvanishing constant) and therefore the same spectrum.

Proof. By the construction of P1 and H in subsection 2.1 above, the matrix

(11)

(
P1(x

∗)
H(x∗)

)

is easily checked to be nonsingular. Premultiply both matrices in the pencil
{A(x∗),−f ′(x∗)} by (11) to get the strictly equivalent one

(12)

{(
P1(x

∗)A(x∗)
0

)
,

( −P1(x
∗)f ′(x∗)

−H(x∗)f ′(x∗)

)}
,

where we have made use of the identity H(x∗)A(x∗)=0.
Now, let Ẽ be any rectangular matrix making

E =
(
ϕ′
1(ξ

∗) Ẽ
)

nonsingular. By multiplying both matrices in (12) by E we derive the pencil

(13)

{(
P1(x

∗)A(x∗)ϕ′
1(ξ

∗) K1

0 0

)
,

( −P1(x
∗)f ′(x∗)ϕ′

1(ξ
∗) K2

0 K3

)}
,

with K1 = P1(x
∗)A(x∗)Ẽ, K2 = −P1(x

∗)f ′(x∗)Ẽ, and K3 = −H(x∗)f ′(x∗)Ẽ. We
have used the relation −H(x∗)f ′(x∗)ϕ′

1(ξ
∗) = 0, which results from the fact that

the kernel of (Hf)′(x∗) = H(x∗)f ′(x∗) defines the tangent space to W1 at x∗ and
coincides with the subspace imϕ′

1(ξ
∗). By construction, the pencil (13) is strictly

equivalent to {A(x∗),−f ′(x∗)}.
For later use, note that the nonvanishing rows at the top of the first matrix in (13)

have full rank because P1(x
∗)A(x∗) has full row rank and E is nonsingular. Similarly,

K3 is nonsingular since H(x∗)f ′(x∗) has full row rank and E is nonsingular. The
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latter makes the pencil (13) strictly equivalent to

(14)

{(
A1(ξ

∗) K1

0 0

)
,

( −f ′
1(ξ

∗) K2

0 I

)}
,

where A1(ξ
∗) = P1(x

∗)A(x∗)ϕ′
1(ξ

∗) and f ′
1(ξ

∗) = −P1(x
∗)f ′(x∗)ϕ′

1(ξ
∗).

Premultiply (14) by
(
I −K2

0 I

)
to obtain the strictly equivalent pencil

(15)

{(
A1(ξ

∗) K1

0 0

)
,

( −f ′
1(ξ

∗) 0
0 I

)}
,

which is regular with index ν since the sequence of matrix multiplications performed
so far preserves regularity and the Kronecker index. Notice that the characteristic
polynomial of this pencil (which, up to a nonvanishing multiplicative constant, coin-
cides with that of {A(x∗),−f ′(x∗)}) reads

(16) det

[
λ

(
A1(ξ

∗) K1

0 0

)
+

( −f ′
1(ξ

∗) 0
0 I

)]
= det[λA1(ξ

∗)− f ′
1(ξ

∗)].

This means that the characteristic polynomials of {A(x∗),−f ′(x∗)} and
{A1(ξ

∗),−f ′
1(ξ

∗)} differ only by a nonvanishing multiplicative constant. In partic-
ular, from the assumption of regularity on {A(x∗),−f ′(x∗)} it follows that the pencil
{A1(ξ

∗),−f ′
1(ξ

∗)} is regular as well and has the same spectrum as {A(x∗),−f ′(x∗)}.
Additionally, the regularity of the pencil (15) implies that its Kronecker index ν

equals the index of the null eigenvalue of the matrix

(17)

(
λ

(
A1(ξ

∗) K1

0 0

)
+

( −f ′
1(ξ

∗) 0
0 I

))−1 (
A1(ξ

∗) K1

0 0

)

for any λ not being a pencil eigenvalue (cf. [15, Theorem A.12]). By means of ele-
mentary matrix computations, the matrix (17) can be rewritten as

(18)

(
(λA1(ξ

∗)− f ′
1(ξ

∗))−1A1(ξ
∗) (λA1(ξ

∗)− f ′
1(ξ

∗))−1K1

0 0

)
,

and its jth power reads(
[(λA1(ξ

∗)− f ′
1(ξ

∗))−1A1(ξ
∗)]j−1 0

0 0

)

×
(

(λA1(ξ
∗)− f ′

1(ξ
∗))−1A1(ξ

∗) (λA1(ξ
∗)− f ′

1(ξ
∗))−1K1

0 0

)
.

Since the nonvanishing rows of the second matrix have full row rank, the rank of this
product equals that of [(λA1(ξ

∗)− f ′
1(ξ

∗))−1A1(ξ
∗)]j−1. This makes it clear that the

index of the null eigenvalue of the matrix (17) (that is, ν) exceeds by one that of
(λA1(ξ

∗) − f ′
1(ξ

∗))−1A1(ξ
∗), which in turn equals the Kronecker index of the pen-

cil {A1(ξ
∗),−f ′

1(ξ
∗)}. The matrix pencil {A1(ξ

∗),−f ′
1(ξ

∗)} has therefore Kronecker
index ν − 1, and this completes the proof.

Lemma 1 comprises the key property needed in the proof of the following result.
Theorem 1. Let x∗ be an equilibrium of the quasilinear DAE (3) with geometric

index ν. Then the local pencil {A(x∗),−f ′(x∗)} is regular with Kronecker index ν.
Additionally, the characteristic polynomial det[λA(x∗)− f ′(x∗)] coincides, up to

a nonvanishing multiplicative constant, with that of any ν-step local reduction of the
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DAE. Hence, the linear stability properties of x∗ are characterized by the spectrum of
the matrix pencil {A(x∗),−f ′(x∗)}.

Proof. Let {(A1, f1), . . . , (Aν , fν)} be a local reduction sequence for the DAE (3)
around the equilibrium point x∗. As shown in Lemma 1 above, the characteristic
polynomial is preserved in the reduction process (up to multiplication by a nonva-
nishing constant), and therefore the characteristic polynomials det[λA(x∗) − f ′(x∗)]
and det[λAν(u

∗)− f ′
ν(u

∗)] differ only by a nonzero multiplicative constant.
Since x∗ has geometric index ν, the matrix Aν(u

∗) is nonsingular. The nonsin-
gularity of Aν(u

∗) shows that the characteristic polynomial det[λAν(u
∗) − f ′

ν(u
∗)]

does not vanish identically and therefore neither does det[λA(x∗) − f ′(x∗)] so that
the pencil {A(x∗),−f ′(x∗)} is a regular one.

Moreover, the matrix Aν is the first nonsingular one (at the equilibrium point)
within the sequence {A,A1, . . . , Aν}. This means that the Kronecker index of
{A(x∗),−f ′(x∗)} must equal the geometric index ν. Indeed, if the Kronecker in-
dex (say, ν̃) exceeds ν, the matrix Aν should be singular since, according to Lemma
1, every reduction step decreases the Kronecker index by one, and therefore the pencil
{Aν(u

∗),−f ′
ν(u

∗)} would have index ν̃ − ν > 0. On the contrary, if the Kronecker
index ν̃ is less than ν, for the same reason the pencil {Aν̃(η

∗),−f ′
ν̃(η

∗)} would have
index zero, meaning that Aν̃(η

∗) should be a nonsingular matrix; this contradicts the
fact that Aν is the first nonsingular matrix at the equilibrium point.

4. Eigenvalue divergence and change of stability. Let us drive our atten-
tion back to the parametrized quasilinear DAE (1). Assume that we are given an
equilibrium branch (xf (μ), μ). If these equilibrium points are regular (that is, if they
have a well-defined geometric index), then as discussed in the previous section their lin-
ear stability properties are defined by the matrix pencil {A(xf (μ), μ),−fx(xf (μ), μ)}.
Suppose now that the regularity requirement does not hold at a certain parameter
value μ∗. The matrix pencil spectrum may well display an eigenvalue diverging from
R− to R+ (or vice-versa) through infinity, resulting in a change in the linear stability
properties of the equilibrium. If the remaining eigenvalues lie on C−, the transition
from R− to R+ leads to a stability loss in the equilibrium branch. In this section we
provide a detailed characterization of this phenomenon.

4.1. Parametrized problems and singularities. In a parametrized setting,
the set W1 introduced in subsection 2.1 will depend on the values of the parameter
so that we can write

(19) W1(μ) = {x ∈W0 / f(x, μ) ∈ imA(x, μ)}.

Suppose that x∗ is an equilibrium point for a given parameter value μ∗; namely,
let f(x∗, μ∗) = 0, and assume that A(x, μ) has constant rank r < m on some
neighborhood of (x∗, μ∗). This implies that there exists an open neighborhood U
of (x∗, μ∗) which accommodates Ck matrix-valued mappings P1 : U → Rr×m and
H : U → R(m−r)×m such that, for all (x, μ) ∈ U , the restriction P1(x, μ)

∣∣
imA(x,μ)

is an isomorphism imA(x, μ) → R
r, and the identity kerH(x, μ) = imA(x, μ) holds.

The latter makes it possible to describe W1(μ) as H(x, μ)f(x, μ) = 0. Assume also
that the matrix of partial derivatives (Hf)x has maximal rank m− r at (x∗, μ∗).

In this situation, the matrix

(20) S(x, μ) =
(
P1(x, μ)A(x, μ)
(Hf)x(x, μ)

)
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characterizes index one points on U according to Proposition 1. Roughly speaking,
we will work in an index one context with some exceptional points where the index
one requirements fail; in this setting, these singularities are reflected by the fact
that the matrix S becomes singular. It is worth mentioning that, in a higher index
context, S would be singular everywhere; the reader is referred to [45] for a detailed
discussion of singular points in arbitrary quasilinear DAEs. In the framework of
subsection 4.2, since P1A and (Hf)x have maximal rank, the singularities of the
problem will be locally defined by the lack of transversality of kerA(x, μ) and W1(μ),
since the tangent space to the latter is given by ker (Hf)x(x, μ). Subsection 4.3 will
accommodate singularities which arise from rank deficiencies in A.

4.2. Constant rank in A(x, µ). In the following discussion we make use of the
operators P1, H , and S introduced above. For the sake of simplicity we also assume
(often without explicit mention) that the statements for parameter values μ 	= μ∗ do
hold in a sufficiently small neighborhood of μ∗.

Theorem 2. Assume that A ∈ C2(W0 × I,Rm×m) and f ∈ C2(W0 × I,Rm) in
(1). Let x∗ be an equilibrium point for a given μ∗; that is, assume that f(x∗, μ∗) =
0, and suppose that A(x, μ) has constant rank r on some neighborhood of (x∗, μ∗).
Assume additionally that

(i) the matrices fx and (
fx fμ

(detS)x (detS)μ
)

(21)

are nonsingular at (x∗, μ∗) and
(ii) the matrix pencil {A(x∗, μ∗),−fx(x∗, μ∗)} is regular with Kronecker index two.

Then there exists a C2 curve of equilibria (xf (μ), μ) in Rm+1 which passes through
(x∗, μ∗). Locally around (xf (μ), μ), the set W1(μ) is an r-dimensional manifold; for
μ 	= μ∗ this manifold is locally foliated by solutions of (1), and the linear stability prop-
erties of the equilibrium (xf (μ), μ) for the flow of (1) onW1(μ) are defined by the spec-
trum of the pencil {A(xf (μ), μ),−fx(xf (μ), μ)}, which is a regular one. When μ in-
creases through μ∗, the equilibrium undergoes a stability change owing to the transition
of one pencil eigenvalue from R

− to R
+ or from R

+ to R
− by divergence through ±∞.

Proof. The local existence of the equilibrium branch (xf (μ), μ) is an immedi-
ate consequence of the implicit function theorem, since fx(x

∗, μ∗) is assumed to be
nonsingular in item (i) above.

As indicated above, the set W1(μ) (which accommodates, in particular, the curve
of equilibria since 0 = f(xf (μ), μ) ∈ imA(xf (μ), μ)) can be locally described as the
zero set of H(x, μ)f(x, μ). Because of the fact that both H and fx have maximal rank
and using f(xf (μ), μ) = 0, the derivative (Hf)x(x

f (μ), μ) = H(xf (μ), μ)fx(x
f (μ), μ)

has itself maximal rank, thus showing that the mapping Hf is a submersion at
(xf (μ), μ). This yields a local r-dimensional manifold structure on W1(μ) for every
fixed μ in a sufficiently small neighborhood of μ∗.

Since fx is nonsingular at (x∗, μ∗), the nonsingularity of the matrix depicted in
(21) implies that the Schur complement of fx, that is,

(22) (detS)μ − (detS)xf−1
x fμ,

is nonsingular as well [20]. From the implicit function theorem, it is easy to see that
the expression displayed in (22) equals the derivative

(23)
d

dμ
detS(xf (μ), μ).
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The nonvanishing of the derivative in (23), together with the fact—proved below—
that detS(x∗, μ∗) = 0, implies that detS(xf (μ), μ) 	= 0 for μ 	= μ∗, thus showing
that the equilibrium points xf (μ) have geometric index one for parameter values
μ 	= μ∗. According to the results discussed in subsection 2.1, this means that W1(μ)
is completely filled by solutions of the DAE in a neighborhood of xf (μ) for μ 	= μ∗.

Now, since for μ 	= μ∗ the equilibrium xf (μ) has geometric index one, according
to Theorem 1 its linear stability properties can be assessed in terms of the matrix
pencil {A(xf (μ), μ),−fx(xf (μ), μ)}, which is regular with Kronecker index one. The
characteristic polynomial of this matrix pencil can be easily examined using a specific
parametrization of W1(μ) as detailed in what follows.

Indeed, since H(x∗, μ∗) has maximal rank and fx(x
∗, μ∗) is nonsingular, as indi-

cated above the product Hfx = (Hf)x (keep in mind that f(x∗, μ∗) = 0) has itself
maximal rank m − r at (x∗, μ∗). From the implicit function theorem it follows that
m−r variables z from within x (say, without loss of generality, the lastm−r ones) can
be locally written in terms of μ and the r remaining (i.e., the first) variables in x, to
be denoted by y, as z = ψ(y, μ). This yields, for every fixed μ, a local parametrization
of the manifold W1(μ) of the form

(24) ξ → ϕ1(ξ, μ) =

(
ξ

ψ(ξ, μ)

)
.

From the P1(x, μ) operator introduced in subsection 4.1 above and the local
parametrization ϕ1(ξ, μ), we derive a one-step local reduction A1(ξ, μ)ξ

′ = f1(ξ, μ) in
which the leading matrix A1 has the expression

A1(ξ, μ) = P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ)ϕ1ξ(ξ, μ)

=
(
(P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))1 (P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))2

)
×
(

I
ψξ(ξ, μ)

)

= (P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))1

−(P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))2((Hf)z)
−1(ϕ1(ξ, μ), μ)(Hf)y(ϕ1(ξ, μ), μ),

where we have used the identity ψξ(ξ, μ) = −((Hf)z(ϕ1(ξ, μ), μ))
−1(Hf)y(ϕ1(ξ, μ), μ)

resulting from the implicit function theorem; note also that the subindex 1 (resp., 2)
signals the first r (resp., last m − r) columns of the matrix P1A. The last expression
depicted above forA1(ξ, μ) shows that this matrix is the Schur complement of (Hf)z in

S(ϕ1(ξ, μ), μ) =

(
(P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))1 (P1(ϕ1(ξ, μ), μ)A(ϕ1(ξ, μ), μ))2

(Hf)y(ϕ1(ξ, μ), μ) (Hf)z(ϕ1(ξ, μ), μ)

)
.

The fact that the matrix pencil {A(xf (μ), μ),−fx(xf (μ), μ)} has Kronecker index
one if μ 	= μ∗ implies that its spectrum has rkA = r eigenvalues. We know the
characteristic polynomials det[λA(xf (μ), μ) − fx(x

f (μ), μ)] and det[λA1(ξ
f (μ), μ) −

(f1)ξ(ξ
f (μ), μ)] to differ only by a nonvanishing multiplicative constant, and therefore

we can write

(25) det[λA1(ξ
f (μ), μ)− (f1)ξ(ξ

f (μ), μ)] = ar(μ)λ
r + · · ·+ a1(μ)λ + a0(μ)

in some neighborhood of μ∗ for certain coefficients ai(μ). Here ξf (μ) stands for
the description of xf (μ) in the coordinates ξ. Note, in particular, that the leading
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coefficient ar(μ) equals detA1(ξ
f (μ), μ). Since, as detailed above, A1 is a Schur

reduction of S, we have

ar(μ) = detA1(ξ
f (μ), μ) = α(μ) detS(xf (μ), μ)

for some nonzero factor α(μ). The nonvanishing of the derivative in (23), together with
the identity detS(xf (μ∗), μ∗) = 0 (see below), implies that ar(μ

∗) = 0, a′r(μ∗) 	= 0.
Finally, the index two condition on the matrix pencil {A(x∗, μ∗),−fx(x∗, μ∗)}

implies that {A1(ξ
∗, μ∗),−(f1)ξ(ξ

∗, μ∗)} is an index one pencil, following Lemma
1. Note incidentally that, in particular, this implies that A1(ξ

∗, μ∗) is singular or,
equivalently, that detS(x∗, μ∗) = 0. Additionally, the fact that A1 is a Schur reduction
of S means that the rank deficiency is the same in both matrices; the nonvanishing
of the derivative in (23) implies that S is rank-deficient by one, and hence so it is A1,
meaning that rkA1(ξ

∗, μ∗) = r − 1. Since the pencil {A1(ξ
∗, μ∗),−(f1)ξ(ξ

∗, μ∗)} is
index one, the number of eigenvalues of its spectrum equals the rank r−1 of the leading
matrix A1 so that ar−1(μ

∗) 	= 0. Together with the conditions ar(μ
∗) = 0, a′r(μ

∗) 	= 0,
this implies (see, e.g., Theorem 2.1 in [52]) that one root of the polynomial (25) (that
is, one eigenvalue of the pencil {A1(ξ

f (μ), μ),−(f1)ξ(ξ
f (μ), μ)} and, accordingly, of

{A(xf (μ), μ),−fx(xf (μ), μ)} which is known to have the same spectrum) changes sign
by divergence through ±∞ as μ increases through μ∗. The transition from R− to R+

or from R+ to R− hence yields a stability change in the equilibrium.
It is worth mentioning that in the statement of Theorem 2 we do not need to

assume explicitly that detS(x∗, μ∗) = 0 because this follows from the requirement
that the pencil {A(x∗, μ∗),−fx(x∗, μ∗)} is index two, as explained above.

Remark. The assumption that the matrix in (21) is nonsingular at (x∗, μ∗) means
that the branch of equilibria is transverse to the set detS = 0 at (x∗, μ∗), since the
nonsingularity of (21) is equivalent to the nonvanishing of (23). This nonvanishing
requirement, together with detS(x∗, μ∗) = 0, can be equivalently expressed by the
pair of conditions

kerS(xf (μ∗), μ∗) = span[v] 	= {0},(26)

dS
dμ

(xf (μ∗), μ∗)v /∈ imS(xf (μ∗), μ∗).(27)

This is a consequence of Jacobi’s formula

d

dμ
(detM(μ)) = tr

(
(AdjM(μ))

d

dμ
M(μ)

)
,

where tr stands for the trace and Adj for the adjoint, that is, the transpose of the ma-
trix of cofactors; cf. [14]. We just need to writeM(μ) = S(xf (μ), μ) and use the prop-
erty (trP )v = Pv, which holds when P has a unique nonnull eigenvalue and v is an
associated eigenvector (this is the case for P = (AdjM)M ′ and v ∈ kerM−{0} in the
present setting). Alternatively, the reader can differentiate the identity detM(μ) I =
AdjM(μ)M(μ) at μ∗ and multiply by v ∈ kerM(μ∗) = kerS(xf (μ∗), μ∗) to get

d detS
dμ

(xf (μ∗), μ∗)v = AdjS(xf (μ∗), μ∗)
dS
dμ

(xf (μ∗), μ∗)v.

The equivalence follows easily from the fact that a singular n × n matrix S verifies
AdjS 	= 0 if and only if rkS = n− 1, together with the property kerAdjS = imS for
any corank-one matrix S.
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Local dynamics for µ = µ∗. As detailed in the proof of Theorem 2, the set
W1(μ) locally has an r-dimensional manifold structure for parameter values μ close
to (and including) μ∗. The dynamics on this manifold are defined by the reduced
quasilinear system A1(ξ, μ)ξ

′ = f1(ξ, μ), and this is also valid for μ = μ∗. However,
only for μ 	= μ∗ it is true that there is a regular flow filling (locally) this manifold
and that the linear stability properties of this flow are defined by the spectrum of the
pencil {A(xf (μ), μ),−fx(xf (μ), μ)}; one eigenvalue of this spectrum diverges through
±∞ as μ increases through μ∗, and this is responsible for the stability change.

Nevertheless, some information can be given about the dynamics of the DAE at
the critical parameter value μ = μ∗. Note first that the remaining r − 1 eigenvalues
of the linearization depend continuously on μ and their values at μ∗ are given by the
r− 1 eigenvalues of the pencil {A(x∗, μ∗),−fx(x∗, μ∗)}; because of the assumption of
nonsingularity on fx(x

∗, μ∗), λ = 0 is not an eigenvalue of this pencil, and therefore
these r − 1 eigenvalues stay away from the origin.

These eigenvalues can be shown to characterize the linear stability properties
of a restricted regular flow which is defined by the DAE on a codimension-one
submanifold of W1(μ

∗). This is a consequence of Lemma 3 and Corollary 5 of [8]
when applied to the enlargement ξ′ = p, 0 = A1(ξ, μ)p − f1(ξ, μ); note, in par-
ticular, that the requirement CBk /∈ imD in Lemma 3 of [8] holds by the prop-
erty ind {A1(ξ

∗, μ∗),−(f1)ξ(ξ
∗, μ∗)} = 1 derived in the proof of Theorem 2 above.

Additionally, provided that kerA1(ξ
∗, μ∗) intersects transversally the singular set

detA1(ξ, μ
∗) = 0, it can be shown that there exists an invariant curve on W1(μ

∗)
accommodating a solution which crosses smoothly the singularity in finite time, akin
to the results in [7].

Semiexplicit problems. Applying Theorem 2 to the DAE (2), one obtains the
corresponding statement for semiexplicit systems proved in [42] (cf. Theorem 2 there).
Indeed, in the light of (4), we may set P1 = (Ir 0) and H = (0 Ip). This yields

S(y, z, μ) =
(

Ir 0
gy(y, z, μ) gz(y, z, μ)

)
,

and therefore detS(y, z, μ) = det gz(y, z, μ). The matrices in item (i) of Theorem 2
above then read

(
hy hz
gy gz

)
,

⎛
⎝ hy hz hμ

gy gz gμ
(det gz)y (det gz)z (det gz)μ

⎞
⎠ ,(28)

whereas the matrix pencil in item (ii) has the form

{(
Ir 0
0 0

)
, −

(
hy hz
gy gz

)}
.(29)

The eigenvalue transition stated in Theorem 2 above therefore holds if, at a given
equilibrium (y∗, z∗, μ∗), both matrices in (28) are nonsingular and the pencil (29) is
regular with Kronecker index two.

For the sake of comparison with Theorem 2 in [42], note that zero is not a pencil
eigenvalue if and only if the first matrix in (28) is nonsingular. Notice also that this
nonsingularity requirement implies that (gy gz) has maximal rank at (y∗, z∗, μ∗) and
hence makes W1(μ) (which is explicitly defined by the condition g(y, z, μ) = 0) an
r-dimensional manifold for all μ in a neighborhood of μ∗.
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4.3. Rank deficiencies in A(x, µ). The stability change phenomenon dis-
cussed above may also result from a rank drop in the leading matrix A(x, μ) of the
quasilinear DAE (1) at a singularity as detailed in this subsection. It is worth noting
that this phenomenon cannot be displayed by the semiexplicit system (2), in which
the leading matrix is the constant one block-diag(I, 0).

Focus the attention on an equilibrium point x∗ for (1) at a given parameter value
μ∗. Even though the matrix A(x, μ) will undergo a rank drop at (x∗, μ∗), we will make
the assumption that there exists a neighborhood Ũ of (x∗, μ∗) and an r-dimensional
linear space L(x, μ) varying smoothly with (x, μ) and such that imA(x, μ) = L(x, μ)
on a dense subset of Ũ . The space L(x, μ) can be thought of as a continuation
of imA(x, μ) which is assumed to exist. Note, in particular, that this implies that
the identity rkA(x, μ) = r holds on the aforementioned dense subset of Ũ . This
way, we may still assert the existence of a (possibly smaller) neighborhood U and
smoothly varying operators P1 : U → Rr×m and H : U → R(m−r)×m such that, for
all (x, μ) ∈ U , the restriction P1(x, μ)|L(x,μ) is an isomorphism L(x, μ) → Rr, and the
identity kerH(x, μ) = L(x, μ) holds.

Defining the matrix S(x, μ) as in (20), we are then allowed to tackle the stability
change phenomenon in the present framework as follows. As before, without explicit
mention we assume that the claims for μ 	= μ∗ hold in a sufficiently small neighborhood
of μ∗.

Theorem 3. Assume that A ∈ C2(W0 × I,Rm×m), f ∈ C2(W0 × I,Rm) in
(1). Let x∗ be an equilibrium of (1) for a given μ∗. Suppose that there exists a local
r-dimensional continuation L(x, μ) of imA(x, μ) which depends on (x, μ) in a C2

manner. Assume additionally that
(i) the matrices fx and

(
fx fμ

(detS)x (detS)μ
)

(30)

are nonsingular at (x∗, μ∗);
(ii) rkA(x∗, μ∗) = r − 1;
(iii) the matrix pencil {A(x∗, μ∗),−fx(x∗, μ∗)} is regular with Kronecker index one.

Then there exists a C2 curve of equilibria (xf (μ), μ) in Rm+1 which passes through
(x∗, μ∗). For μ 	= μ∗, locally around (xf (μ), μ) the setW1(μ) is an r-dimensional man-
ifold which is locally foliated by solutions of (1), and the linear stability properties of the
equilibrium (xf (μ), μ) for the flow of (1) on W1(μ) are defined by the spectrum of the
matrix pencil {A(xf (μ), μ),−fx(xf (μ), μ)}, which is a regular one. When μ increases
through μ∗, the equilibrium undergoes a stability change owing to the transition of one
pencil eigenvalue from R− to R+ or from R+ to R− by divergence through ±∞.

Proof. Many steps in the proof parallel those in Theorem 2. Indeed, the existence
of a C2-curve of equilibria passing through (x∗, μ∗) follows from the implicit function
theorem as in Theorem 2. The rank deficiency of A(x∗, μ∗) assumed in item (ii)
above implies that detS(x∗, μ∗) = 0, since the first r rows of the matrix S depicted in
(20) cannot have full row rank. Additionally, the nonsingularity of (30) guarantees,
again as in Theorem 2, that detS(xf (μ), μ) 	= 0 for μ 	= μ∗, and then at those
points rkA(x, μ) = r. Moreover, since rkA = r on a dense subset of U , the relation
rkA(x, μ) = r holds on a neighborhood of (xf (μ), μ), always for μ 	= μ∗.

Now, H(x∗, μ∗) has maximal rankm−r and since so it has fx(x
∗, μ∗) the product

Hfx(x
∗, μ∗) = (Hf)x(x

∗, μ∗) (remember that f(x∗, μ∗) = 0) has itself maximal rank.
This is then the case on some neighborhood of (x∗, μ∗), and therefore the set Hf = 0
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has locally a manifold structure. Because of the fact that rkA(x, μ) = r, as explained
above, the set Hf = 0 is locally coincident with W1(μ) near (xf (μ), μ) for μ 	= μ∗,
and therefore W1(μ) has locally an r-dimensional manifold structure for μ 	= μ∗.

Moreover, the property detS(xf (μ), μ) 	= 0 if μ 	= μ∗ proved above makes
(xf (μ), μ) a regular point with geometric index one for μ 	= μ∗. This means that
the (index one) pencil {A(xf (μ), μ),−fx(xf (μ), μ)} characterizes the linear stability
properties of the equilibrium xf (μ) for μ 	= μ∗. Its behavior when μ increases through
μ∗ can be assessed in terms of a one-step reduction for μ 	= μ∗ exactly as in Theorem
2. The key remark is that ϕ1 in (24) now defines a local parametrization of the set
Hf = 0 which, for μ 	= μ∗, coincides locally with W1(μ). Together with the operator
P1 constructed from the assumed existence of the continuation L(x, μ), we obtain a
one-step reduction of the DAE in which the leading matrix A1(ξ, μ) has the same
expression as in Theorem 2, arising again as a Schur reduction of S. This means that
the characteristic polynomial of {A1(ξ

f (μ), μ),−(f1)ξ(ξ
f (μ), μ)} (which differs from

that of {A(xf (μ), μ),−fx(xf (μ), μ)} only by a nonzero multiplicative constant) still
has the form displayed in (25) with ar(μ

∗) = 0, a′r(μ
∗) 	= 0 as before.

The condition that remains to be checked is ar−1(μ
∗) 	= 0, which cannot be

derived as in Theorem 2. Now, this requirement follows from the index one assumption
on the matrix pencil at the singularity stated in item (iii); this implies that the number
of eigenvalues equals the rank of the Amatrix, which by item (ii) is r−1. The spectrum
at (x∗, μ∗) then has r − 1 eigenvalues, meaning that ar−1(μ

∗) 	= 0. The result then
follows as in Theorem 2.

Note that, for the rank deficiency to characterize the stability change phenomenon,
now we need to assume that the index does not change at the singularity (cf. item (iii) in
the statement of Theorem 3). In this situation a minimal rank drop at (x∗, μ∗) guaran-
tees that exactly one eigenvalue diverges through ±∞ as stated above. This index one
requirement cannot be neglected; see, specifically, the case G2 = 0, μ2 = 1 in subsec-
tion 5.4 below.

5. Stability loss in MNA-modeled electrical circuits. Qualitative proper-
ties of electrical circuits are often addressed in terms of state space models, which
unfortunately are not available in many practical situations. It is therefore of in-
terest to address them using semistate models based on DAEs. In this section we
illustrate the stability loss phenomenon characterized above by discussing it in the
framework of certain quasilinear DAEs actually used in electrical circuit simulation.
The quasilinear form of these differential-algebraic systems drives the analysis beyond
the semiexplicit context of [4, 6, 43, 44, 49, 50, 52].

5.1. MNA. DAEs are widely used in electrical circuit modeling and analysis.
In particular, MNA models are used by current circuit simulation programs such as
SPICE or TITAN in order to set up the network equations [12, 18, 45, 48]. These
models have the quasilinear form

AcC(A
T
c e, μ)A

T
c e

′ = −Arγ(A
T
r e, μ)−Alil −Aviv −Aiis(t),(31a)

L(il, μ)i
′
l = AT

l e,(31b)

0 = vs(t)−AT
v e.(31c)

Here Ac, Ar, Al, Av, and Ai are reduced incidence matrices describing how the
branches accommodating capacitors, resistors, inductors, and voltage and current
sources, respectively, are related to the circuit nodes. The model variables x are
defined by the node potentials e, the inductor currents il, and the voltage source
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currents iv; in turn, is(t) and vs(t) are excitation terms coming from the current and
voltage sources, respectively. Resistors are assumed to be voltage-controlled, with
a current-voltage characteristic ir = γ(vr, μ). The matrices C and L stand for the
incremental capacitance and inductance, respectively.

The symbol μ is used to distinguish certain circuit parameters which may be re-
sponsible for stability changes. Notice that these changes may stem from the presence
of μ in the right-hand side of (31) but also from its appearance in the leading matrix
of this system, namely,

A(x, μ) =

⎛
⎝ AcC(A

T
c e, μ)A

T
c 0 0

0 L(il, μ) 0
0 0 0

⎞
⎠ ,(32)

which may result in rank deficiencies. We will illustrate these phenomena by address-
ing a specific example.

5.2. A circuit example. Consider the circuit depicted in Figure 1.

1e

2e4e 3e

2µ
Is

2C

1C

2

1

1

+

−
G

G

l vii

µ

L sV

Ref

Fig. 1. A coupled circuit with parameters µ1, µ2.

The circuit consists of a DC current source Is, a DC voltage source Vs, three
linear resistors with conductances G1, G2, and μ1, a linear inductor with inductance
L, and two coupled capacitors, with capacitance matrix

(33) C =

(
C1 μ2

μ2 C2

)
.

The case μ2 = 0 would stand for a pair of uncoupled linear capacitors with capaci-
tances C1, C2.

The MNA model (31) has the form A(μ)x′ + B(μ)x = g, where the semistate
vector x = (e1, e2, e3, e4, il, iv) is defined by the potentials at the circuit nodes (except
at the reference one) and the currents through the inductor and the voltage source.
The matrices A(μ), B(μ) can be shown to read as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 C1 −C1 + μ2 0 0 0
0 −C1 + μ2 C1 + C2 − 2μ2 0 0 0
0 0 0 0 0 0
0 0 0 0 L 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 0 0 0 0 −1
0 0 0 0 0 1
0 0 G2 + μ1 −μ1 0 0
0 0 −μ1 μ1 1 0
0 0 0 −1 0 0
1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Finally, the contribution of the sources is comprised in the excitation term g =
(0, 0, 0, Is, 0,−Vs), which is constant because of the DC nature of both sources.

The mapping f(x, μ) in (1) is given by −B(μ)x + g and hence verifies fx = −B;
from the fact that detB = G1(G2 + μ1) it follows that the conditions G1 	= 0,
G2+μ1 	= 0 make B nonsingular. Both requirements will be assumed to hold in what
follows. The circuit then has a unique equilibrium which is defined by the conditions
e1 = e3 = e4 = iv = 0, e2 = Vs, and il = Is. Below we analyze stability changes in
this equilibrium due to the fact that certain values of the parameters μ1 and μ2 make
the DAE a singular one.

Note that the leading matrix A has rank three except if L = 0 or C1C2 −μ2
2 = 0,

the latter making the capacitance matrix C in (33) a singular one. We will assume
throughout that L 	= 0 and consider first some cases in which C1C2−μ2

2 	= 0, yielding
a locally constant rank in A, to address later rank deficiencies in A owing to values
of μ2 for which C1C2 − μ2

2 = 0.

5.3. Constant rank in A. Let us fix the parameter μ2 with a value such that
C1C2−μ2

2 	= 0, and assume that L 	= 0, G1 	= 0, and G2 	= 0 (the latter will be needed
to guarantee that G2 + μ1 	= 0 at the critical parameter value). As indicated above,
the conditions C1C2 − μ2

2 	= 0, L 	= 0 imply that the leading matrix A has constant
rank r = 3. Set

P1 =

⎛
⎝ 0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎠, H =

⎛
⎝ 1 0 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎠(34)

so that the matrix S in (20) reads

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 C1 −C1 + μ2 0 0 0
0 −C1 + μ2 C1 + C2 − 2μ2 0 0 0
0 0 0 0 L 0

−G1 0 0 0 0 1
0 0 μ1 −μ1 −1 0
−1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(35)

The determinant of this matrix is −Lμ1(C1C2 − μ2
2). Since we have assumed that

L 	= 0 and C1C2 − μ2
2 	= 0, the MNA model becomes singular when μ1 = 0, which

corresponds to open-circuiting the resistor with conductance μ1; otherwise, the DAE
is index one.

If the hypotheses stated in Theorem 2 are met, the equilibrium point computed
above is expected to undergo a stability change when μ1 decreases through zero. As
indicated above, the matrix fx = −B is nonsingular, whereas the nonsingularity of
the matrix (21) in item (i) of Theorem 2 amounts to the condition (detS)μ1 	= 0,
which does actually hold since (detS)μ1 = −L(C1C2 − μ2

2) 	= 0.
It remains to check the regularity and the Kronecker index of the pencil {A,B} at

the singularity. To this aim we can make use of the projector-based characterization of
matrix pencils originally introduced in [25] and [16]. Provided that Q0 is a projector
onto kerA, the pencil {A,B} is regular with Kronecker index one if and only if
A1 = A+ BQ0 is a nonsingular matrix. If this is not the case, letting in turn Q1 be
a projector onto kerA1, the pencil is regular with Kronecker index two if and only if
A2 = A1 +B(I −Q0)Q1 is nonsingular. Using the fact that μ1 = 0 at the singularity,
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we compute

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 0 0 0 0 −1
0 C1 −C1 + μ2 0 0 1
0 −C1 + μ2 C1 + C2 − 2μ2 0 0 0
0 0 0 0 0 0
0 0 0 −1 L 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

which is singular, and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 0 0 0 0 −1
0 C1 −C1 + μ2 0 0 1
0 −C1 + μ2 C1 + C2 − 2μ2 0 0 0
0 0 0 0 1 0
0 0 0 −1 L 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

by means of the projectors

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 L 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The matrix A2 is nonsingular because of the assumption C1C2 − μ2
2 	= 0, and this

means that the matrix pencil at the singularity is indeed regular with Kronecker
index two.

According to Theorem 2, the equilibrium is then expected to undergo a change
of stability at μ1 = 0. As a matter of example, fixing the parameter values L = C1 =
C2 = G1 = G2 = 1, μ2 = 0, computer calculations show that one eigenvalue diverges
from −∞ to +∞ as μ1 decreases through zero; the other two pencil eigenvalues are
located at −0.382 and −2.618 when the system takes on the value μ1 = 0. The
asymptotic stability of the equilibrium is lost when μ1 becomes negative.

5.4. Rank deficiencies in A. Let us assume now that the parameter μ2 takes
on a nonvanishing value for which C1C2 − μ2

2 = 0, and suppose that L 	= 0, G1 	= 0
and that μ1 is fixed at a nonzero value such that G2+μ1 	= 0. The assumption μ2 	= 0
implies C1 	= 0 	= C2 because of the identity C1C2 − μ2

2 = 0.
With these parameter values, the matrix A experiences a rank drop from three

to two. However, its image space admits the smooth continuation

span [(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)],

and therefore the operators P1, H introduced in (34), as well as the matrix S in (35),
are still valid in the present setting.

Since we are facing a rank-deficient problem, a stability change is expected to
occur if the hypotheses of Theorem 3 do hold. The matrix fx = −B is nonsingular as
before, and the nonsingularity of (30) now relies on the condition 2Lμ1μ2 	= 0, which
is met because of the assumptions specified above. Item (i) in Theorem 3 is therefore
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satisfied, as well as the minimal rank deficiency assumed in item (ii). It remains to
check that the matrix pencil is regular with Kronecker index one at the singularity.
Noting that C1C2 − μ2

2 = 0, C1 	= 0, we can take

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 0 C1−μ2

C1
0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

which yields

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 0 0 0 0 −1
0 C1 −C1 + μ2 0 0 1
0 −C1 + μ2 C1 + C2 − 2μ2 +G2 + μ1 −μ1 0 0
0 0 −μ1 μ1 0 0
0 0 0 −1 L 0

1 0 −C1−μ2

C1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Using the identity μ2
2 = C1C2 the determinant of this matrix can be simplified to

(36) Lμ1(G1(C1 + C2 − 2μ2) +G2C1).

If the parameter values prevent this expression from vanishing, then the pencil is
index one at the singularity, item (iii) of Theorem 3 is met, and a change of stability
is expected to occur.

This is the case if we fix, for instance, the values L = C1 = C2 = G1 = G2 =
μ1 = 1; as μ2 increases through 1 (a value which makes C1C2−μ2 = 0) one eigenvalue
diverges from −∞ to +∞, the other two being located at −1 and −2, respectively.
Again, the asymptotic stability of the equilibrium is lost when the parameter increases
through the critical value μ2 = 1.

The index one requirement coming from item (iii) cannot be dropped. If we set
L = C1 = C2 = G1 = μ1 = 1 and make G2 = 0, then a pair of eigenvalues diverge
from ±i∞ to ±∞ when μ2 increases through 1, yielding a spiral-saddle transition.
Notice that these parameter values annihilate the expression depicted in (36). This
behavior is reminiscent of the phenomena addressed for semiexplicit DAEs in [5, 43].
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